Frames and Coorbit Theory on Homogeneous Spaces with a Special Guidance on the Sphere
نویسندگان
چکیده
The topic of this article is a generalization of the theory of coorbit spaces and related frame constructions to Banach spaces of functions or distributions over domains and manifolds. As a special case one obtains modulation spaces and Gabor frames on spheres. Group theoretical considerations allow first to introduce generalized wavelet transforms. These are then used to define coorbit spaces on homogeneous spaces, which consist of functions having their generalized wavelet transform in some weighted Lp space. We also describe natural ways of discretizing those wavelet transforms, or equivalently to obtain atomic decompositions and Banach frames for the corresponding coorbit spaces. Based on these facts we treat aspects of nonlinear approximation and show how the new theory can be applied to the Gabor transform on spheres. For the S1 we exhibit concrete examples of admissible Gabor atoms which are very closely related to uncertainty minimizing states.
منابع مشابه
Coorbit Spaces and Banach Frames on Homogeneous Spaces with Applications to the Sphere
This paper is concerned with the construction of generalized Banach frames on homogeneous spaces. The major tool is a unitary group representation which is square integrable modulo a certain subgroup. By means of this representation, generalized coorbit spaces can be defined. Moreover, we can construct a specific reproducing kernel which, after a judicious discretization, gives rise to atomic d...
متن کاملMultivariate Shearlet Transform, Shearlet Coorbit Spaces and their Structural Properties
This chapter is devoted to the generalization of the continuous shearlet transform to higher dimensions as well as to the construction of associated smoothness spaces and to the analysis of their structural properties, respectively. To construct canonical scales of smoothness spaces , so-called shearlet coorbit spaces , and associated atomic decompositions and Banach frames we prove that the ge...
متن کاملGeneralized coorbit space theory and inhomogeneous function spaces of Besov-Lizorkin-Triebel type
Coorbit space theory is an abstract approach to function spaces and their atomic decompositions. The original theory developed by Feichtinger and Gröchenig in the late 1980ies heavily uses integrable representations of locally compact groups. Their theory covers, in particular, homogeneous Besov-Lizorkin-Triebel spaces, modulation spaces, Bergman spaces and the recent shearlet spaces. However, ...
متن کاملWeighted Coorbit Spaces and Banach Frames on Homogeneous Spaces
This article is concerned with frame constructions on domains and manifolds. The starting point is a unitary group representation which is square integrable modulo a suitable subgroup and therefore gives rise to a generalized continuous wavelet transform. Then generalized coorbit spaces can be defined by collecting all functions for which this wavelet transform is contained in a weighted Lp-spa...
متن کاملShearlet Coorbit Spaces and Associated Banach Frames
In this paper, we study the relationships of the newly developed continuous shearlet transform with the coorbit space theory. It turns out that all the conditions that are needed to apply the coorbit space theory can indeed be satisfied for the shearlet group. Consequently, we establish new families of smoothness spaces, the shearlet coorbit spaces. Moreover, our approach yields Banach frames f...
متن کامل