A structural map of oncomiR-1 at single-nucleotide resolution
نویسندگان
چکیده
The miR-17-92a cluster, also known as 'oncomiR-1', is an RNA transcript that plays a pivotal regulatory role in cellular processes, including the cell cycle, proliferation and apoptosis. Its dysregulation underlies the development of several cancers. Oncomir-1 comprises six constituent miRNAs, each processed with different efficiencies as a function of both developmental time and tissue type. The structural mechanisms that regulate such differential processing are unknown, and this has impeded our understanding of the dysregulation of oncomiR-1 in pathophysiology. By probing the sensitivity of each nucleotide in oncomiR-1 to reactive small molecules, we present a secondary structural map of this RNA at single-nucleotide resolution. The secondary structure and solvent accessible regions of oncomiR-1 reveal that most of its primary microRNA domains are suboptimal substrates for Drosha-DGCR8, and therefore resistant to microprocessing. The structure indicates that the binding of trans-acting factors is required to remodel the tertiary organization and unmask cryptic primary microRNA domains to facilitate their processing into pre-microRNAs.
منابع مشابه
The mutate-and-map protocol for inferring base pairs in structured RNA.
Chemical mapping is a widespread technique for structural analysis of nucleic acids in which a molecule's reactivity to different probes is quantified at single nucleotide resolution and used to constrain structural modeling. This experimental framework has been extensively revisited in the past decade with new strategies for high-throughput readouts, chemical modification, and rapid data analy...
متن کاملIn-silico study to identify the pathogenic single nucleotide polymorphisms in the coding region of CDKN2A gene
Background: CDKN2A, encoding two important tumor suppressor proteins p16 and p14, is a tumor suppressor gene. Mutations in this gene and subsequently the defect in p16 and p14 proteins lead to the downregulation of RB1/p53 and cancer malignancy. To identify the structural and functional effects of mutations, various powerful bioinformatics tools are available. The aim of this study is the ident...
متن کاملRNA structure analysis at single nucleotide resolution by selective 2'-hydroxyl acylation and primer extension (SHAPE).
The reactivity of an RNA ribose hydroxyl is shown to be exquisitely sensitive to local nucleotide flexibility because a conformationally constrained adjacent 3'-phosphodiester inhibits formation of the deprotonated, nucleophilic oxyanion form of the 2'-hydroxyl group. Reaction with an appropriate electrophile, N-methylisatoic anhydride, to form a 2'-O-adduct thus can be used to monitor local st...
متن کاملA mutate-and-map protocol for inferring base pairs in structured RNA
Chemical mapping is a widespread technique for structural analysis of nucleic acids in which a molecule’s reactivity to different probes is quantified at single-nucleotide resolution and used to constrain structural modeling. This experimental framework has been extensively revisited in the past decade with new strategies for high-throughput read-outs, chemical modification, and rapid data anal...
متن کاملA Bioinformatics Approach to Prioritize Single Nucleotide Polymorphisms in TLRs Signaling Pathway Genes
It has been suggested that single nucleotide polymorphisms (SNPs) in genes involved in Toll-like receptors (TLRs) pathway may exhibit broad effects on function of this network and might contribute to a range of human diseases. However, the extent to which these variations affect TLR signaling is not well understood. In this study, we adopted a bioinformatics approach to predict the consequences...
متن کامل