Corrigendum to “Experimental Study of Direct Laser Deposition of Ti-6Al-4V and Inconel 718 by Using Pulsed Parameters”

نویسندگان

  • Kamran Shah
  • Izhar Ul Haq
  • Shaukat Ali Shah
  • Farid Ullah Khan
  • Muhammad Tahir Khan
  • Sikander Khan
چکیده

Laser direct metal deposition (LDMD) has developed from a prototyping to a single metal manufacturing tool. Its potential for creating multimaterial and functionally graded structures is now beginning to be explored. This work is a first part of a study in which a single layer of Inconel 718 is deposited on Ti-6Al-4V substrate. Single layer tracks were built at a range of powder mass flow rates using a coaxial nozzle and 1.5 kW diode laser operating in both continuous and pulsed beam modes. This part of the study focused on the experimental findings during the deposition of Inconel 718 powder on Ti-6Al-4V substrate. Scanning electron microscopy (SEM) and X-ray diffraction analysis were performed for characterization and phase identification. Residual stress measurement had been carried out to ascertain the effects of laser pulse parameters on the crack development during the deposition process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Residual Stress in Metal Parts Produced by Powder-Bed Additive Manufacturing Processes

In this study, residual stresses from the electron beam additive manufacturing (EBAM) and selective laser melting (SLM) processes, due to repeated thermal cycles, were investigated. Residual stresses play a crucial role in part performance, and thus, it is critical to evaluate the process-induced residual stresses in AM parts. Ti-6Al-4V and Inconel 718 parts produced by EBAM and SLM, respective...

متن کامل

comparative study of the cutting forces in high speed machining of Ti – 6 Al – 4 V nd Inconel 718 with a round cutting edge tool

Titanium alloy Ti–6Al–4V and nickel-based superalloy Inconel 718 have been widely employed in modern manufacturing. The published literature on high speed machining (HSM) of the two materials often involves different machining set-up, which makes it difficult to directly apply the research findings from onematerial to the other to select the most appropriate tool geometry and cutting conditions...

متن کامل

Effect of Laser Spot Welding Variables on Microstructure and Mechanical Properties of the Ti-6AL-4V to AISI304 Dissimilar Joint

In this project, joining Ti-6Al-4V and AISI 304 dissimilar plates by laser-spot-welding method has been studied. In this regard, Ti-6Al-4V and AISI 304 plates, with a thickness of 0.7 and 0.5 respectively, were lap-welded using an interlayer of 0.2 & 0.3 mm copper and silver (pure silver). The process was done by 400Watt pulsed laser (Nd:YAG) using oncentric spot welding with 4mm diameter circl...

متن کامل

Effect of Laser Spot Welding Variables on Microstructure and Mechanical Properties of the Ti-6AL-4V to AISI304 Dissimilar Joint

In this project, joining Ti-6Al-4V and AISI 304 dissimilar plates by laser-spot-welding method has been studied. In this regard, Ti-6Al-4V and AISI 304 plates, with a thickness of 0.7 and 0.5 respectively, were lap-welded using an interlayer of 0.2 & 0.3 mm copper and silver (pure silver). The process was done by 400Watt pulsed laser (Nd:YAG) using oncentric spot welding with 4mm diameter circl...

متن کامل

DIRECT LASER DEPOSITION OF Ti-6Al-4V FROM ELEMENTAL POWDER BLENDS

A thin-wall structure composed of Ti-6Al-4V has been deposited using direct laser deposition (DLD) from blended Ti, Al, and V elemental powders. The microstructure and composition distribution along the build height direction were intensively investigated using optical microscopy, scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS), and Vickers hardness testing. The micr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014