A Characterization of De Morgan Algebras

نویسنده

  • Janusz A. Brzozowski
چکیده

In this note we show that every de Morgan algebra is isomorphic to a two-subset algebra, 〈P,⊔,⊓,∼, 0P , 1P 〉, where P is a set of pairs (X,Y ) of subsets of a set I, (X,Y )⊔(X , Y ) = (X∩X , Y ∪Y ), (X,Y )⊓(X , Y ) = (X ∪ X , Y ∩ Y ), ∼ (X,Y ) = (Y,X), 1P = (∅, I), and 0P = (I, ∅). This characterization generalizes a previous result that applied only to a special type of de Morgan algebras called ternary algebras.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dually quasi-De Morgan Stone semi-Heyting algebras I. Regularity

This paper is the first of a two part series. In this paper, we first prove that the variety of dually quasi-De Morgan Stone semi-Heyting algebras of level 1 satisfies the strongly blended $lor$-De Morgan law introduced in cite{Sa12}. Then, using this result and the results of cite{Sa12}, we prove our main result which gives an explicit description of simple algebras(=subdirectly irreducibles) ...

متن کامل

Dually quasi-De Morgan Stone semi-Heyting algebras II. Regularity

This paper is the second of a two part series. In this Part, we prove, using the description of simples obtained in Part I, that the variety $mathbf{RDQDStSH_1}$ of regular dually quasi-De Morgan Stone semi-Heyting algebras of level 1 is the join of the variety generated by the twenty 3-element $mathbf{RDQDStSH_1}$-chains and the variety of dually quasi-De Morgan Boolean semi-Heyting algebras--...

متن کامل

Unification and Projectivity in De Morgan and Kleene Algebras

We provide a complete classification of solvable instances of the equational unification problem over De Morgan and Kleene algebras with respect to unification type. The key tool is a combinatorial characterization of finitely generated projective De Morgan and Kleene algebras.

متن کامل

Interpretability into Lukasiewicz Algebras

In this paper we give a characterization of all the interpretations of the varieties of bounded distributive lattices, De Morgan algebras and Lukasiewicz algebras of order m in the variety of Lukasiewicz algebras of order n. In the case of distributive lattices we give a structure theorem that is generalized to De Morgan algebras and to Lukasiewicz algebras of order m. In the last two cases we ...

متن کامل

Manuel ABAD , Alicia FERNANDEZ and Nelli MESKE FREE BOOLEAN CORRELATION LATTICES

A correlation lattice is an algebra (B,∧,∨, σ, 0, 1) where (B,∧,∨, 0, 1) is a bounded lattice and σ is a dual endomorphism on B which has the property σ(x) = x for a fixed number n, n ∈ 2N + 1 ([3], [4]). This notion generalizes orthomodular lattices, and in the distributive case, Boolean algebras, De Morgan algebras and some classes of Ockham algebras. Moreover, in [4], D. Schweigert and M. Sz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJAC

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2001