A Characterization of De Morgan Algebras
نویسنده
چکیده
In this note we show that every de Morgan algebra is isomorphic to a two-subset algebra, 〈P,⊔,⊓,∼, 0P , 1P 〉, where P is a set of pairs (X,Y ) of subsets of a set I, (X,Y )⊔(X , Y ) = (X∩X , Y ∪Y ), (X,Y )⊓(X , Y ) = (X ∪ X , Y ∩ Y ), ∼ (X,Y ) = (Y,X), 1P = (∅, I), and 0P = (I, ∅). This characterization generalizes a previous result that applied only to a special type of de Morgan algebras called ternary algebras.
منابع مشابه
Dually quasi-De Morgan Stone semi-Heyting algebras I. Regularity
This paper is the first of a two part series. In this paper, we first prove that the variety of dually quasi-De Morgan Stone semi-Heyting algebras of level 1 satisfies the strongly blended $lor$-De Morgan law introduced in cite{Sa12}. Then, using this result and the results of cite{Sa12}, we prove our main result which gives an explicit description of simple algebras(=subdirectly irreducibles) ...
متن کاملDually quasi-De Morgan Stone semi-Heyting algebras II. Regularity
This paper is the second of a two part series. In this Part, we prove, using the description of simples obtained in Part I, that the variety $mathbf{RDQDStSH_1}$ of regular dually quasi-De Morgan Stone semi-Heyting algebras of level 1 is the join of the variety generated by the twenty 3-element $mathbf{RDQDStSH_1}$-chains and the variety of dually quasi-De Morgan Boolean semi-Heyting algebras--...
متن کاملUnification and Projectivity in De Morgan and Kleene Algebras
We provide a complete classification of solvable instances of the equational unification problem over De Morgan and Kleene algebras with respect to unification type. The key tool is a combinatorial characterization of finitely generated projective De Morgan and Kleene algebras.
متن کاملInterpretability into Lukasiewicz Algebras
In this paper we give a characterization of all the interpretations of the varieties of bounded distributive lattices, De Morgan algebras and Lukasiewicz algebras of order m in the variety of Lukasiewicz algebras of order n. In the case of distributive lattices we give a structure theorem that is generalized to De Morgan algebras and to Lukasiewicz algebras of order m. In the last two cases we ...
متن کاملManuel ABAD , Alicia FERNANDEZ and Nelli MESKE FREE BOOLEAN CORRELATION LATTICES
A correlation lattice is an algebra (B,∧,∨, σ, 0, 1) where (B,∧,∨, 0, 1) is a bounded lattice and σ is a dual endomorphism on B which has the property σ(x) = x for a fixed number n, n ∈ 2N + 1 ([3], [4]). This notion generalizes orthomodular lattices, and in the distributive case, Boolean algebras, De Morgan algebras and some classes of Ockham algebras. Moreover, in [4], D. Schweigert and M. Sz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJAC
دوره 11 شماره
صفحات -
تاریخ انتشار 2001