Equilibrium Measures for Coupled Map Lattices: Existence, Uniqueness and Finite-Dimensional Approximations
نویسندگان
چکیده
We consider coupled map lattices of hyperbolic type, i.e., chains of weakly interacting hyperbolic sets (attractors) over multi-dimensional lattices. We describe thermodynamic formalism of the underlying spin lattice system and then prove existence, uniqueness, mixing properties, and exponential decay of correlations of equilibrium measures for a class of Holder continuous potential functions with su ciently small Holder constant. We also study nite-dimensional approximations of equilibrium measures in terms of lattice systems (Z-approximations) and lattice spin systems (Zapproximations). We apply our results to establish existence, uniqueness, and mixing property of SRB-measures as well as obtain the entropy formula.
منابع مشابه
An extension theorem for finite positive measures on surfaces of finite dimensional unit balls in Hilbert spaces
A consistency criteria is given for a certain class of finite positive measures on the surfaces of the finite dimensional unit balls in a real separable Hilbert space. It is proved, through a Kolmogorov type existence theorem, that the class induces a unique positive measure on the surface of the unit ball in the Hilbert space. As an application, this will naturally accomplish the work of Kante...
متن کاملSpatio-temporal Chaos. 3. Natural Spatio-temporal Measures for Coupled Circle Map Lattices
In a series of three papers, we study the geometrical and statistical structure of a class of coupled map lattices with natural couplings. These are innnite-dimensional analogues of Axiom A systems. Our main result is the existence of a natural spatio-temporal measure which is the spatio-temporal analogue of the SRB measure. In the rst paper we develop a stable manifold theory for such systems ...
متن کاملSpatio-temporal Chaos. 2. Unique Gibbs States for Higher-dimensional Symbolic Systems
In a series of three papers, we study the geometrical and statistical structure of a class of coupled map lattices with natural couplings. These are innnite-dimensional analogues of Axiom A systems. Our main result is the existence of a natural spatio-temporal measure which is the spatio-temporal analogue of the SRB measure. In the rst paper we develop a stable manifold theory for such systems ...
متن کاملUniqueness of the Srb Measure for Piecewise Expanding Weakly Coupled Map Lattices in Any Dimension
We prove the existence of a unique SRB measure for a wide range of multidimensional weakly coupled map lattices. These include piecewise expanding maps with diffusive coupling.
متن کاملSpatio-temporal Chaos. 1. Hyperbolicity, Structural Stability, Spatio-temporal Shadowing and Symbolic Dynamics
In a series of three papers, we study the geometrical and statistical structure of a class of coupled map lattices with natural couplings. These are innnite-dimensional analogues of Axiom A systems. Our main result is the existence of a natural spatio-temporal measure which is the spatio-temporal analogue of the SRB measure. In this paper we develop a stable manifold theory for such systems as ...
متن کامل