Some Unsolved Practical Problems in Discriminant Analysis
نویسنده
چکیده
منابع مشابه
Approximation of Linear Discriminant Analysis for Word Dependent Visual Features Selection
To automatically determine a set of keywords that describes the content of a given image is a difficult problem, because of (i) the huge dimension number of the visual space and (ii) the unsolved object segmentation problem. Therefore, in order to solve matter (i), we present a novel method based on an Approximation of Linear Discriminant Analysis (ALDA) from the theoretical and practical point...
متن کاملSolved and unsolved problems in generalized notions of Connes amenability
We survey the recent investigations on (bounded, sequential) approximate Connes amenability and pseudo-Connes amenability for dual Banach algebras. We will discuss the core problems concerning these notions and address the signicance of any solutions to them to the development of the eld.
متن کاملSupervised Feature Extraction of Face Images for Improvement of Recognition Accuracy
Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...
متن کاملFeature reduction of hyperspectral images: Discriminant analysis and the first principal component
When the number of training samples is limited, feature reduction plays an important role in classification of hyperspectral images. In this paper, we propose a supervised feature extraction method based on discriminant analysis (DA) which uses the first principal component (PC1) to weight the scatter matrices. The proposed method, called DA-PC1, copes with the small sample size problem and has...
متن کاملRegularized Discriminant Analysis, Ridge Regression and Beyond
Fisher linear discriminant analysis (FDA) and its kernel extension—kernel discriminant analysis (KDA)—are well known methods that consider dimensionality reduction and classification jointly. While widely deployed in practical problems, there are still unresolved issues surrounding their efficient implementation and their relationship with least mean squares procedures. In this paper we address...
متن کامل