Integer Optimization on Convex Semialgebraic Sets

نویسندگان

  • Leonid Khachiyan
  • Lorant Porkolab
چکیده

Let Y be a convex set inRk defined by polynomial inequalities and equations of degree at most d ≥ 2 with integer coefficients of binary length at most l. We show that if the set of optimal solutions of the integer programming problem min{yk | y = (y1, . . . , yk) ∈ Y ∩Zk} is not empty, then the problem has an optimal solution y∗ ∈ Y ∩Zk of binary length ld O(k ). For fixed k, our bound implies a polynomial-time algorithm for computing an optimal integral solution y∗. In particular, we extend Lenstra’s theorem on the polynomialtime solvability of linear integer programming in fixed dimension to semidefinite integer programming.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix Convex Hulls of Free Semialgebraic Sets

This article resides in the realm of the noncommutative (free) analog of real algebraic geometry – the study of polynomial inequalities and equations over the real numbers – with a focus on matrix convex sets C and their projections Ĉ. A free semialgebraic set which is convex as well as bounded and open can be represented as the solution set of a Linear Matrix Inequality (LMI), a result which s...

متن کامل

Analysis of the Convergence Rate for the Cyclic Projection Algorithm Applied to Basic Semialgebraic Convex Sets

In this paper, we study the rate of convergence of the cyclic projection algorithm applied to finitely many basic semi-algebraic convex sets. We establish an explicit convergence rate estimate which relies on the maximum degree of the polynomials that generate the basic semi-algebraic convex sets and the dimension of the underlying space. We achieve our results by exploiting the algebraic struc...

متن کامل

Geometry of 3D Environments and Sum of Squares Polynomials

Motivated by applications in robotics and computer vision, we study problems related to spatial reasoning of a 3D environment using sublevel sets of polynomials. These include: tightly containing a cloud of points (e.g., representing an obstacle) with convex or nearly-convex basic semialgebraic sets, computation of Euclidean distances between two such sets, separation of two convex basic semalg...

متن کامل

Convexifying Positive Polynomials and Sums of Squares Approximation

We show that if a polynomial f ∈ R[x1, . . . , xn] is nonnegative on a closed basic semialgebraic set X = {x ∈ Rn : g1(x) ≥ 0, . . . , gr(x) ≥ 0}, where g1, . . . , gr ∈ R[x1, . . . , xn], then f can be approximated uniformly on compact sets by polynomials of the form σ0 + φ(g1)g1 + · · ·+ φ(gr)gr, where σ0 ∈ R[x1, . . . , xn] and φ ∈ R[t] are sums of squares of polynomials. In particular, if X...

متن کامل

Convex inner approximations of nonconvex semialgebraic sets applied to fixed-order controller design

We describe an elementary algorithm to build convex inner approximations of nonconvex sets. Both input and output sets are basic semialgebraic sets given as lists of defining multivariate polynomials. Even though no optimality guarantees can be given (e.g. in terms of volume maximization for bounded sets), the algorithm is designed to preserve convex boundaries as much as possible, while removi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete & Computational Geometry

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2000