Fragments of Spider Diagrams of Order and Their Relative Expressiveness

نویسندگان

  • Aidan Delaney
  • Gem Stapleton
  • John Taylor
  • Simon J. Thompson
چکیده

Investigating the expressiveness of a diagrammatic logic provides insight into how its syntactic elements interact at the semantic level. Moreover, it allows for comparisons with other notations. Various expressiveness results for diagrammatic logics are known, such as the theorem that Shin’s Venn-II system is equivalent to monadic first order logic. The techniques employed by Shin for Venn-II were adapted to allow the expressiveness of Euler diagrams to be investigated. We consider the expressiveness of spider diagrams of order (SDoO), which extend spider diagrams by including syntax that provides ordering information between elements. Fragments of SDoO are created by systematically removing each aspect of the syntax. We establish the relative expressiveness of the various fragments. In particular, one result establishes that spiders are syntactic sugar in any fragment that contains order, negation and shading. We also show that shading is syntactic sugar in any fragment containing negation and spiders. The existence of syntactic redundancy within the spider diagram of order logic is unsurprising however, we find it interesting that spiders or shading are redundant in fragments of the logic. Further expressiveness results are presented throughout the paper. The techniques we employ may well extend to related notations, such as the Euler/Venn logic of Swoboda et al. and Kent’s constraint diagrams.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Relative Expressiveness of Second-Order Spider Diagrams and Regular Expressions

This paper is about spider diagrams, an extension of Euler diagrams that includes syntax to make assertions about set cardinalities. Like many diagrammatic logics, spider diagrams are a monadic and first-order, so they are inexpressive. The limitation to first-order precludes the formalisation of many fundamental concepts such as the cardinality of a set being even. To this end, second-order sp...

متن کامل

Defining star-free regular languages using diagrammatic logic

Spider diagrams are a recently developed visual logic that make statements about relationships between sets, their members and their cardinalities. By contrast, the study of regular languages is one of the oldest active branches of computer science research. The work in this thesis examines the previously unstudied relationship between spider diagrams and regular languages. In this thesis, the ...

متن کامل

Enhancing the Expressiveness of Spider Diagram Systems

Many visual languages based on Euler diagrams have emerged for expressing relationships between sets. The expressive power of these languages varies, but the majority are monadic and some include equality. Spider diagrams are one such language, being equivalent in expressive power to monadic first order logic with equality. Spiders are used to represent the existence of elements or specific ind...

متن کامل

Spider Diagrams of Order

Spider diagrams are a visual logic capable of makeing statements about relationships between sets and their cardinalities. Various meta-level results for spider diagrams have been established, including their soundness, completeness and expressiveness. Recent work has established various relationships between spider diagrams and regular languages, which highlighted various classes of languages ...

متن کامل

On the Descriptional Complexity of a Diagrammatic Notation

Spider diagrams are a widely studied, visual logic that are able to make statements about relationships between sets and their cardinalities. Various meta-level results for spider diagrams have been established, including their soundness, completeness and expressiveness. In order to further enhance our understanding of spider diagrams, we can compare them with other languages; in the case of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010