Spectral Analysis of Input Spike Trains by Spike-Timing-Dependent Plasticity

نویسندگان

  • Matthieu Gilson
  • Tomoki Fukai
  • Anthony N. Burkitt
چکیده

Spike-timing-dependent plasticity (STDP) has been observed in many brain areas such as sensory cortices, where it is hypothesized to structure synaptic connections between neurons. Previous studies have demonstrated how STDP can capture spiking information at short timescales using specific input configurations, such as coincident spiking, spike patterns and oscillatory spike trains. However, the corresponding computation in the case of arbitrary input signals is still unclear. This paper provides an overarching picture of the algorithm inherent to STDP, tying together many previous results for commonly used models of pairwise STDP. For a single neuron with plastic excitatory synapses, we show how STDP performs a spectral analysis on the temporal cross-correlograms between its afferent spike trains. The postsynaptic responses and STDP learning window determine kernel functions that specify how the neuron "sees" the input correlations. We thus denote this unsupervised learning scheme as 'kernel spectral component analysis' (kSCA). In particular, the whole input correlation structure must be considered since all plastic synapses compete with each other. We find that kSCA is enhanced when weight-dependent STDP induces gradual synaptic competition. For a spiking neuron with a "linear" response and pairwise STDP alone, we find that kSCA resembles principal component analysis (PCA). However, plain STDP does not isolate correlation sources in general, e.g., when they are mixed among the input spike trains. In other words, it does not perform independent component analysis (ICA). Tuning the neuron to a single correlation source can be achieved when STDP is paired with a homeostatic mechanism that reinforces the competition between synaptic inputs. Our results suggest that neuronal networks equipped with STDP can process signals encoded in the transient spiking activity at the timescales of tens of milliseconds for usual STDP.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

Spike Train Timing-Dependent Associative Modification of Hippocampal CA3 Recurrent Synapses by Mossy Fibers

In the CA3 region of the hippocampus, extensive recurrent associational/commissural (A/C) connections made by pyramidal cells may function as a network for associative memory storage and recall. We here report that long-term potentiation (LTP) at the A/C synapses can be induced by association of brief spike trains in mossy fibers (MFs) from the dentate gyrus and A/C fibers. This LTP not only re...

متن کامل

An Improved Supervised Learning Algorithm Using Triplet-Based Spike-Timing-Dependent Plasticity

The purpose of supervised learning with temporal encoding for spiking neurons is to make the neurons emit arbitrary spike trains in response to given synaptic inputs. Recent years, the supervised learning algorithms based on synaptic plasticity have developed rapidly. As one of the most efficient supervised learning algorithms, the remote supervised method (ReSuMe) uses the conventional pair-ba...

متن کامل

Spike-timing-dependent synaptic plasticity can form "zero lag links" for cortical oscillations

We study the impact of spike-timing-dependent synaptic plasticity (STDP) on coherent gamma activity between distant cortical regions with reciprocal projections. Our simulation network consists of two areas and includes a STDP model re4ecting e5cacy suppression between pre/ postsynaptic spike pairs as found in recent experiments during stimulation with spike trains (Nature 416 (2002) 433). We 8...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2012