A new nano-cryosurgical modality for tumor treatment using biodegradable MgO nanoparticles.
نویسندگان
چکیده
UNLABELLED A new conceptual modality for nano-cryosurgical ablation of tumors is proposed in this article. The main strategy is to apply MgO nanoparticles (NPs), which are nontoxic, biodegradable, and have few side-effects on the human body, to mediate the freezing procedure effectively. Detailed investigation via animal experiments and nucleation analysis demonstrated that delivery of MgO NPs into the target tissues would significantly improve the cryosurgical outcome. The formation of an iceball during the freezing process is accelerated and enlarged due to the excellent thermal properties of MgO NPs. In addition this method could promote the generation of ice nuclei and thus enhance cryoinjury to the target cells. Therefore, combining the biodegradability and nontoxicity of MgO NPs with their relatively lightweight properties, excellent thermal properties would help develop a high-performance cryosurgery. These findings may lead to methods for safe and targeted nano-cryosurgery and possibly break through the barriers facing current clinical treatments of cancer. FROM THE CLINICAL EDITOR Cryosurgery is a promising evolving modality to address malignancies. The work presented in this paper may add a novel concept to the field of nanomedicine by demonstrating that MgO nanoparticles enable more efficient ice-ball formation and cryoinjury in the target tissue.
منابع مشابه
Biodegradable magnesium nanoparticle-enhanced laser hyperthermia therapy
BACKGROUND Recently, nanoparticles have been demonstrated to have tremendous merit in terms of improving the treatment specificity and thermal ablation effect on tumors. However, the potential toxicity and long-term side effects caused by the introduced nanoparticles and by expelling them out of the body following surgery remain a significant challenge. Here, we propose for the first time to di...
متن کاملCharacterization of a new biodegradable edible film based on Sago Starch loaded with Carboxymethyl Cellulose nanoparticles
Objective(s): Biodegradable film is widely used because it is free from synthetic substances and does not lead to environment pollution. This study aimed to prepare and characterize biodegradable sago starch films loaded with Carboxymethyl Cellulose nanoparticles. Methods: Sago starch films were prepared and plasticized with sorbitol/ glycerol by t...
متن کاملBiodegradable Polymeric Nanoparticles Show High Efficacy and Specificity at DNA Delivery to Human Glioblastoma in Vitro and in Vivo
Current glioblastoma therapies are insufficient to prevent tumor recurrence and eventual death. Here, we describe a method to treat malignant glioma by nonviral DNA delivery using biodegradable poly(β-amino ester)s (PBAEs), with a focus on the brain tumor initiating cells (BTICs), the tumor cell population believed to be responsible for the formation of new tumors and resistance to many convent...
متن کاملNanotechnology application in cancer treatment
Chemotherapy has been the main known treatment for cancer diseases. However, its achievement rate remains low, mainly because of the restricted accessibility of drugs to the tumor tissue, their painful toxicity, and development of multi-drug resistance. In recent years, either better understanding of tumor biology or development of the ever-growing field of nanotechnology has proposed new treat...
متن کاملIn situ loading of well-dispersed silver nanoparticles on nanocrystalline magnesium oxide for real-time monitoring of catalytic reactions by surface enhanced Raman spectroscopy.
The surface-enhanced Raman spectroscopy (SERS) technique is of great importance for insight into the transient reaction intermediates and mechanistic pathways involved in heterogeneously catalyzed chemical reactions under actual reaction conditions, especially in water. Herein, we demonstrate a facile method for in situ synthesis of nanocrystalline magnesium oxide-Ag(0) (nano MgO-Ag(0)) hybrid ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanomedicine : nanotechnology, biology, and medicine
دوره 8 8 شماره
صفحات -
تاریخ انتشار 2012