Chlorophyll a self-assembly in polar solvent-water mixtures.

نویسنده

  • R Vladkova
چکیده

The conversion of chlorophyll a (Chl a) monomers into large aggregates in six polar solvents upon addition of water has been studied by means of absorption, fluorescence spectroscopy and fluorescence lifetime measurements for the purpose of elucidating the various environmental factors promoting Chl a self-assembly and determining the type of its organization. Two empirical solvent parameter scales were used for quantitative characterization of the different solvation properties of the solvents and their mixtures with water. The mole fractions of water f1/2 giving rise to the midpoint values of the relative fluorescence quantum yield were determined for each solvent, and then various solvent-water mixture parameters for the f1/2 values were compared. On the basis of their comparison, it is concluded that the hydrogen-bonding ability and the dipole-dipole interactions (function of the dielectric constant) of the solvent-water mixtures are those that promote Chl a self-assembly. The influence of the different nature of the non-aqueous solvents on the Chl aggregation is manifested by both the different water contents required to induce Chl monomer-->aggregate transition and the formation of two types of aggregates at the completion of the transition: species absorbing at 740-760 nm (in methanol, ethanol, acetonitrile, acetone) and at 667-670 nm (in pyridine and tetrahydrofuran). It is concluded that the type of Chl organization depends on the coordination ability and the polarizability (function of the index of refraction) of the organic solvent. The ordering of the solvents with respect to the f1/2 values--methanol < ethanol < acetonitrile < acetone < pyridine < tetrahydrofuran--yielded a typical lyotropic (Hofmeister) series. On the basis of this solvent ordering and the disparate effects of the two groups of solvents on the Chl a aggregate organization, it is pointed out that the mechanism of Chl a self-assembly in aqueous media can be considered a manifestation of the Hofmeister effect, as displayed in the lipid-phase behavior (Koynova et al., Eur. J. Biophys. 25, 261-274, 1997). It relates to the solvent ability to modify the bulk structure and to distribute unevenly between the Chl-water interface and bulk liquid.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tuning solution polymer properties by binary water–ethanol solvent mixtures{

The solubility of polymers can be significantly altered by the use of solvent mixtures. The solvent composition also effects the self-assembly properties of amphiphilic copolymers. In addition, water–ethanol mixtures are known to exhibit abnormal physicochemical properties due to the presence of hydration shells around the ethanol molecules, while at the same time both solvents have very low to...

متن کامل

Self-Assembly of Block and Graft Copolymers in Organic Solvents: An Overview of Recent Advances

This review is an attempt to update the recent advances in the self-assembly of amphiphilic block and graft copolymers. Their micellization behavior is highlighted for linear AB, ABC triblock terpolymers, and graft structures in non-aqueous selective polar and non-polar solvents, including solvent mixtures and ionic liquids. The micellar characteristics, such as particle size, aggregation numbe...

متن کامل

The self-assembly of a macroion with anisotropic surface charge density distribution.

A macroion, having anisotropic surface charge density distribution, shows unique self-assembly behaviour in polar solvents. Regular "blackberry"-like assemblies form in methanol-water mixtures due to counter-ion mediated attraction and the strong contribution of hydrogen bonding. However, rod-like assemblies form in acetone-water mixtures as the charge inhomogeneity effect overcomes the non-dir...

متن کامل

Ionic liquid nanostructure enables alcohol self assembly.

Weakly structured solutions are formed from mixtures of one or more amphiphiles and a polar solvent (usually water), and often contain additional organic components. They contain solvophobic aggregates or association structures with incomplete segregation of components, which leads to a poorly defined interfacial region and significant contact between the solvent and aggregated hydrocarbon grou...

متن کامل

Micellization Thermodynamics of Pluronic P123 (EO20PO70EO20) Amphiphilic Block Copolymer in Aqueous Ethylammonium Nitrate (EAN) Solutions

Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers (commercially available as Pluronics or Poloxamers) can self-assemble into various nanostructures in water and its mixtures with polar organic solvents. Ethylammonium nitrate (EAN) is a well-known protic ionic liquid that is expected to affect amphiphile self-assembly due to its ionic nature and hydro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Photochemistry and photobiology

دوره 71 1  شماره 

صفحات  -

تاریخ انتشار 2000