Calculation of Normalised Organ and Effective Doses to Adult Reference Computational Phantoms from Contemporary Computed Tomography Scanners
نویسنده
چکیده
The general-purpose Monte Carlo radiation transport code MCNPX has been used to simulate photon transport and energy deposition in anthropomorphic phantoms due to the x-ray exposure from the Philips iCT 256 and Siemens Definition CT scanners, together with the previously studied General Electric 9800. The MCNPX code was compiled with the Intel FORTRAN compiler and run on a Linux PC cluster. A patch has been successfully applied to reduce computing times by about 4%. The International Commission on Radiological Protection (ICRP) has recently published the Adult Male (AM) and Adult Female (AF) reference computational voxel phantoms as successors to the Medical Internal Radiation Dose (MIRD) stylised hermaphrodite mathematical phantoms that form the basis for the widely-used ImPACT CT Patient dosimetry tool. Comparisons of normalised organ and effective doses calculated for a range of scanner operating conditions have demonstrated significant differences in results (in excess of 30%) between the voxel and mathematical phantoms as a result of variations in anatomy. These analyses illustrate the significant influence of choice of phantom on normalised organ doses and the need for standardisation to facilitate comparisons of dose. Further such dose simulations are needed in order to update the ImPACT CT Patient Dosimetry spreadsheet for contemporary CT practice.
منابع مشابه
Development of Monte Carlo simulations to provide scanner-specific organ dose coefficients for contemporary CT
The ImPACT (imaging performance assessment of CT scanners) CT patient dosimetry calculator is still used world-wide to estimate organ and effective doses (E) for computed tomography (CT) examinations, although the tool is based on Monte Carlo calculations reflecting practice in the early 1990’s. Subsequent developments in CT scanners, definitions of E, anthropomorphic phantoms, computers and ra...
متن کاملDevelopment of Monte Carlo simulations to provide scanner-specific organ dose coefficients for contemporary CT.
The ImPACT (imaging performance assessment of CT scanners) CT patient dosimetry calculator is still used world-wide to estimate organ and effective doses (E) for computed tomography (CT) examinations, although the tool is based on Monte Carlo calculations reflecting practice in the early 1990's. Subsequent developments in CT scanners, definitions of E, anthropomorphic phantoms, computers and ra...
متن کاملAssessment and evaluation of patient doses in adult common CT examinations towards establishing national diagnostic reference levels
Background: Patient radiation doses from computed tomography (CT) are increasing due to the number of CT examinations performed every day. The aim of this study was assess and evaluate patient radiation doses for adult’s common CT examinations to derive local diagnostic guidance levels for common CT examinations. Materials and Methods: Volume and weighted computed tomography dose index (C...
متن کاملDiagnostic Reference Levels for Computed Tomography Examinations in Iran: A Nationwide Radiation Dose Survey
Introduction: International Commission on Radiological Protection introduced three basic principles of radiation protection, namely justification, optimization, and dose limit. Medical exposure has no dose limits, and generally, diagnostic reference levels are used as a tool for optimization of patient protection. Material and Methods: Dosimetry was performed on 20 CT scanners located in 14 cit...
متن کاملDevelopment of Prototype Iranian male pelvic phantom for internal dosimetry
Introduction: Existing phantoms have been constructed based on Caucasian, non-Caucasian and race-specific datasets. According to previous studies made efforts to present Korean- specific phantoms and Chinese female phantom based on CVH dataset due to compare the resulting internal dosimetry with the Caucasian based data showed possible racial difference in human anatomy between ...
متن کامل