Sparsely ionizing diagnostic and natural background radiations are likely preventing cancer and other genomic-instability-associated diseases.

نویسندگان

  • Bobby R Scott
  • Jennifer Di Palma
چکیده

Routine diagnostic X-rays (e.g., chest X-rays, mammograms, computed tomography scans) and routine diagnostic nuclear medicine procedures using sparsely ionizing radiation forms (e.g., beta and gamma radiations) stimulate the removal of precancerous neo-plastically transformed and other genomically unstable cells from the body (medical radiation hormesis). The indicated radiation hormesis arises because radiation doses above an individual-specific stochastic threshold activate a system of cooperative protective processes that include high-fidelity DNA repair/apoptosis (presumed p53 related), an auxiliary apoptosis process (PAM process) that is presumed p53-independent, and stimulated immunity. These forms of induced protection are called adapted protection because they are associated with the radiation adaptive response. Diagnostic X-ray sources, other sources of sparsely ionizing radiation used in nuclear medicine diagnostic procedures, as well as radioisotope-labeled immunoglobulins could be used in conjunction with apoptosis-sensitizing agents (e.g., the natural phenolic compound resveratrol) in curing existing cancer via low-dose fractionated or low-dose, low-dose-rate therapy (therapeutic radiation hormesis). Evidence is provided to support the existence of both therapeutic (curing existing cancer) and medical (cancer prevention) radiation hormesis. Evidence is also provided demonstrating that exposure to environmental sparsely ionizing radiations, such as gamma rays, protect from cancer occurrence and the occurrence of other diseases via inducing adapted protection (environmental radiation hormesis).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مروری بر حفاظت در برابر پرتو در رادیولوژی تشخیصی

Discovery of x-ray and using of it for medical imaging have produced tremendous outcomes for diagnosis and treatment of diseases. More than 10 million diagnostic radiological procedures and 100,000 nuclear medicine exams are being performed daily around the world. According to the national commission on radiological protection and measurements (NCRP)-report 160, medical x-ray is contribute to a...

متن کامل

Radiation-generated short DNA fragments may perturb non-homologous end-joining and induce genomic instability.

Cells exposed to densely ionizing radiation (high-LET) experience more severe biological damage than do cells exposed to sparsely ionizing radiation (low-LET). The prevailing hypothesis is that high-LET radiations induce DNA double strand-breaks (DSB) that are more complex and clustered, and are thereby more challenging to repair. Here, we present experimental data obtained by atomic force micr...

متن کامل

Low-dose-radiation stimulated natural chemical and biological protection against lung cancer.

Research is being conducted world-wide related to chemoprevention of future lung cancer among smokers. The fact that low doses and dose rates of some sparsely ionizing forms of radiation (e.g., x rays, gamma rays, and beta radiation) stimulate transient natural chemical and biological protection against cancer in high-risk individuals is little known. The cancer preventative properties relate t...

متن کامل

Genomic instability induced by ionizing radiation.

Genomic instability is characterized by the increased rate of acquisition of alterations in the mammalian genome. These changes encompass a diverse set of biological end points including karyotypic abnormalities, gene mutation and amplification, cellular transformation, clonal heterogeneity and delayed reproductive cell death. The loss of stability of the genome is becoming accepted as one of t...

متن کامل

The assessment of function, histopathological changes, and oxidative stress in liver tissue due to ionizing and non-ionizing radiations

Background: Compared to past decades, humans are exposed to rapidly increasing levels of radiofrequency electromagnetic radiations (RF-EMF). Despite numerous studies, the biological effects of human exposure to different levels of RF-EMF are not fully understood, yet. This study aimed to evaluate the bioeffects of exposure to "900/1800 MHz" and “2.4 GHz" RF-EMFs, and x-rays as well as their pot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dose-response : a publication of International Hormesis Society

دوره 5 3  شماره 

صفحات  -

تاریخ انتشار 2006