Rumi functions as both a protein O-glucosyltransferase and a protein O-xylosyltransferase.
نویسندگان
چکیده
Mutations in rumi result in a temperature-sensitive loss of Notch signaling in Drosophila. Drosophila Rumi is a soluble, endoplasmic reticulum-retained protein with a CAP10 domain that functions as a protein O-glucosyltransferase. In human and mouse genomes, three potential Rumi homologues exist: one with a high degree of identity to Drosophila Rumi (52%), and two others with lower degrees of identity but including a CAP10 domain (KDELC1 and KDELC2). Here we show that both mouse and human Rumi, but not KDELC1 or KDELC2, catalyze transfer of glucose from UDP-glucose to an EGF repeat from human factor VII. Similarly, human Rumi, but not KDELC1 or KDELC2, rescues the Notch phenotypes in Drosophila rumi clones. During characterization of the Rumi enzymes, we noted that, in addition to protein O-glucosyltransferase activity, both mammalian and Drosophila Rumi also showed significant protein O-xylosyltransferase activity. Rumi transfers Xyl or glucose to serine 52 in the O-glucose consensus sequence ( ) of factor VII EGF repeat. Surprisingly, the second serine (S53) facilitates transfer of Xyl, but not glucose, to the EGF repeat by Rumi. EGF16 of mouse Notch2, which has a diserine motif in the consensus sequence ( ), is also modified with either O-Xyl or O-glucose glycans in cells. Mutation of the second serine (S590A) causes a loss of O-Xyl but not O-glucose at this site. Altogether, our data establish dual substrate specificity for the glycosyltransferase Rumi and provide evidence that amino acid sequences of the recipient EGF repeat significantly influence which donor substrate (UDP-glucose or UDP-Xyl) is used.
منابع مشابه
Molecular cloning of a xylosyltransferase that transfers the second xylose to O-glucosylated epidermal growth factor repeats of notch.
The extracellular domain of Notch contains epidermal growth factor (EGF) repeats that are extensively modified with different O-linked glycans. O-Fucosylation is essential for receptor function, and elongation with N-acetylglucosamine, catalyzed by members of the Fringe family, modulates Notch activity. Only recently, genes encoding enzymes involved in the O-glucosylation pathway have been clon...
متن کاملRegulation of mammalian Notch signaling and embryonic development by the protein O-glucosyltransferase Rumi.
Protein O-glucosylation is a conserved post-translational modification that occurs on epidermal growth factor-like (EGF) repeats harboring the C(1)-X-S-X-P-C(2) consensus sequence. The Drosophila protein O-glucosyltransferase (Poglut) Rumi regulates Notch signaling, but the contribution of protein O-glucosylation to mammalian Notch signaling and embryonic development is not known. Here, we show...
متن کاملA monoclonal antibody specific to zeatin o-glycosyltransferases of phaseolus.
Zeatin O-xylosyltransferase and zeatin O-glucosyltransferase occur in immature embryos of Phaseolus vulgaris and P. lunatus, respectively. Purified preparations of the xylosyltransferase were used as antigen to elicit the formation of antibodies in mice. Hybridoma clones were produced by fusion of mouse spleen cells with myeloma cell line Fox-NY. A clone secreting monoclonal antibody (MAb), XZT...
متن کاملThe Protein O-glucosyltransferase Rumi Modifies Eyes Shut to Promote Rhabdomere Separation in Drosophila
The protein O-glucosyltransferase Rumi/POGLUT1 regulates Drosophila Notch signaling by adding O-glucose residues to the Notch extracellular domain. Rumi has other predicted targets including Crumbs (Crb) and Eyes shut (Eys), both of which are involved in photoreceptor development. However, whether Rumi is required for the function of Crb and Eys remains unknown. Here we report that in the absen...
متن کاملRumi Is a CAP10 Domain Glycosyltransferase that Modifies Notch and Is Required for Notch Signaling
Notch signaling is broadly used to regulate cell-fate decisions. We have identified a gene, rumi, with a temperature-sensitive Notch phenotype. At 28 degrees C-30 degrees C, rumi clones exhibit a full-blown loss of Notch signaling in all tissues tested. However, at 18 degrees C only a mild Notch phenotype is evident. In vivo analyses reveal that the target of Rumi is the extracellular domain of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 108 40 شماره
صفحات -
تاریخ انتشار 2011