Insights into the role of specific lipids in the formation and delivery of lipid microdomains to the plasma membrane of plant cells.
نویسندگان
چکیده
The existence of sphingolipid- and sterol-enriched microdomains, known as lipid rafts, in the plasma membrane (PM) of eukaryotic cells is well documented. To obtain more insight into the lipid molecular species required for the formation of microdomains in plants, we have isolated detergent (Triton X-100)-resistant membranes (DRMs) from the PM of Arabidopsis (Arabidopsis thaliana) and leek (Allium porrum) seedlings as well as from Arabidopsis cell cultures. Here, we show that all DRM preparations are enriched in sterols, sterylglucosides, and glucosylceramides (GluCer) and depleted in glycerophospholipids. The GluCer of DRMs from leek seedlings contain hydroxypalmitic acid. We investigated the role of sterols in DRM formation along the secretory pathway in leek seedlings. We present evidence for the presence of DRMs in both the PM and the Golgi apparatus but not in the endoplasmic reticulum. In leek seedlings treated with fenpropimorph, a sterol biosynthesis inhibitor, the usual Delta(5)-sterols are replaced by 9beta,19-cyclopropylsterols. In these plants, sterols and hydroxypalmitic acid-containing GluCer do not reach the PM, and most DRMs are recovered from the Golgi apparatus, indicating that Delta(5)-sterols and GluCer play a crucial role in lipid microdomain formation and delivery to the PM. In addition, DRM formation in Arabidopsis cells is shown to depend on the unsaturation degree of fatty acyl chains as evidenced by the dramatic decrease in the amount of DRMs prepared from the Arabidopsis mutants, fad2 and Fad3+, affected in their fatty acid desaturases.
منابع مشابه
Membrane fusion/repair in nerve cells: a biophysical application in spinal cord injuries regeneration
Cell membrane has a critical and vital role in functioning and existence of nerve cells that form central nervous system (CNS) in mammals. Disruption of nerve membrane that normally occurs following an accident injuring spinal cord is known to be the major cause of paralysis. In most occasions, spinal cord injuries are not leading to complete cut in spinal cord fibers but are known to cause cru...
متن کاملMembrane fusion/repair in nerve cells: a biophysical application in spinal cord injuries regeneration
Cell membrane has a critical and vital role in functioning and existence of nerve cells that form central nervous system (CNS) in mammals. Disruption of nerve membrane that normally occurs following an accident injuring spinal cord is known to be the major cause of paralysis. In most occasions, spinal cord injuries are not leading to complete cut in spinal cord fibers but are known to cause cru...
متن کاملMembrane domain formation—a key factor for targeted intracellular drug delivery
Protein molecules, toxins and viruses internalize into the cell via receptor-mediated endocytosis (RME) using specific proteins and lipids in the plasma membrane. The plasma membrane is a barrier for many pharmaceutical agents to enter into the cytoplasm of target cells. In the case of cancer cells, tissue-specific biomarkers in the plasma membrane, like cancer-specific growth factor receptors,...
متن کاملSpecialized membrane domains of plasmodesmata, plant intercellular nanopores
Plasmodesmata (PD) are plant-specific membrane-lined channels that connect neighboring cells across the cell wall and are indispensable for intercellular communication, development and defense against pathogens. They consist of concentric membrane tubules of the plasma membrane (PM) on the outside and endoplasmic reticulum (ER) on the inside. The biophysical properties and molecular composition...
متن کاملRole of plasma membrane lipid microdomains in respiratory syncytial virus filament formation.
The fusion protein (F) of respiratory syncytial virus (RSV) is the envelope glycoprotein responsible for the characteristic cytopathology of syncytium formation. RSV has been shown to bud from selective areas of the plasma membrane as pleomorphic virions, including both filamentous and round particles. With immunofluorescent microscopy, we demonstrated evidence of RSV filaments incorporating th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 143 1 شماره
صفحات -
تاریخ انتشار 2007