Natural scenes in tactile texture.

نویسندگان

  • Louise R Manfredi
  • Hannes P Saal
  • Kyler J Brown
  • Mark C Zielinski
  • John F Dammann
  • Vicky S Polashock
  • Sliman J Bensmaia
چکیده

Sensory systems are designed to extract behaviorally relevant information from the environment. In seeking to understand a sensory system, it is important to understand the environment within which it operates. In the present study, we seek to characterize the natural scenes of tactile texture perception. During tactile exploration complex high-frequency vibrations are elicited in the fingertip skin, and these vibrations are thought to carry information about the surface texture of manipulated objects. How these texture-elicited vibrations depend on surface microgeometry and on the biomechanical properties of the fingertip skin itself remains to be elucidated. Here we record skin vibrations, using a laser-Doppler vibrometer, as various textured surfaces are scanned across the finger. We find that the frequency composition of elicited vibrations is texture specific and highly repeatable. In fact, textures can be classified with high accuracy on the basis of the vibrations they elicit in the skin. As might be expected, some aspects of surface microgeometry are directly reflected in the skin vibrations. However, texture vibrations are also determined in part by fingerprint geometry. This mechanism enhances textural features that are too small to be resolved spatially, given the limited spatial resolution of the neural signal. We conclude that it is impossible to understand the neural basis of texture perception without first characterizing the skin vibrations that drive neural responses, given the complex dependence of skin vibrations on both surface microgeometry and fingertip biomechanics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Natural scenes in tactile texture 1 2 3 Louise

Natural scenes in tactile texture 1 2 3 Louise R. Manfredi, Hannes P. Saal, Kyler J. Brown, Mark C. Zielinski, John F. Dammann III, Vicky S. 4 Polashock, and Sliman J. Bensmaia 5 6 7 Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA 8 Committee on Computational Neuroscience, University of Chicago, Chicago, IL 60637, USA 9 Kimberly-Clark Corporation, Ros...

متن کامل

Neuronal basis of tactile sense in the rat whisker system

Using their whiskers, rats have tactile capacities rivaling those of the human with our fingertips. We have carried out experiments to explore how neurons encode touch signals to build up a central representation. Touch signals begin with the receptors in the follicle of each whisker and can be traced to a columnar module in somatosensory cortex that is connected with the same whisker: the well...

متن کامل

Neuronal basis of tactile sense in the rat whisker system

Using their whiskers, rats have tactile capacities rivaling those of the human with our fingertips. We have carried out experiments to explore how neurons encode touch signals to build up a central representation. Touch signals begin with the receptors in the follicle of each whisker and can be traced to a columnar module in somatosensory cortex that is connected with the same whisker: the well...

متن کامل

Self-Organization of Tactile Receptive Fields: Exploring Their Textural Origin and Their Representational Properties

In our earlier work, we found that feature space induced by tactile receptive fields (TRFs) are better than that by visual receptive fields (VRFs) in texture boundary detection tasks. This suggests that TRFs could be intimately associated with texture-like input. In this paper, we investigate how TRFs can develop in a cortical learning context. Our main hypothesis is that TRFs can be self-organ...

متن کامل

Texture Recognition by Tactile Sensing

Tactile sensing is essential for effective manipulation. A detailed understanding of the surface texture can also be used for industrial tasks such as quality assurance. This paper describes an application of machine learning in tactile sensing. A naive Bayes classifier is used to distinguish textures sensed by bio-inspired artificial finger. The finger has randomly distributed strain gauges an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 111 9  شماره 

صفحات  -

تاریخ انتشار 2014