Facial Expression Space Learning
نویسندگان
چکیده
Animation of facial speech and expressions has experienced increased attention recently. Most current research focuses on techniques for capturing, synthesizing, and retargeting facial expressions. Little attention has been paid to the problem of controlling and modifying the expression itself. We present techniques that separate video data into expressive features and underlying content. This allows, for example, a sequence originally recorded with a happy expression to be modified so that the speaker appears to be speaking with an angry or neutral expression. Although the expression has been modified, the new sequences maintain the same visual speech content as the original sequence. The facial expression space that allows these transformations is learned with the aid of a factorization model.
منابع مشابه
Facial Expression Recognition Based on Structural Changes in Facial Skin
Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...
متن کاملExtraction of Subject-Specific Facial Expression Categories and Generation of Facial Expression Feature Space using Self-Mapping
This paper proposes a generation method of a subject-specific Facial Expression Map (FEMap) using the Self-Organizing Maps (SOM) of unsupervised learning and Counter Propagation Networks (CPN) of supervised learning together. The proposed method consists of two steps. In the first step, the topological change of a face pattern in the expressional process of facial expression is learned hierarch...
متن کاملAn unsupervised learning approach for facial expression recognition using semi-definite programming and generalized principal component analysis
In this paper, we consider facial expression recognition using an unsupervised learning framework. Specifically, given a data set composed of a number of facial images of the same subject with different facial expressions, the algorithm segments the data set into groups corresponding to different facial expressions. Each facial image can be regarded as a point in a high-dimensional space, and t...
متن کاملHigh-resolution Animation of Facial Dynamics
This paper presents a framework for performance-based animation and retargeting of high-resolution face models from motion capture. A novel method is introduced for learning a mapping between sparse 3D motion capture markers and dense high-resolution 3D scans of face shape and appearance. A high-resolution facial expression space is learnt from a set of 3D face scans as a person specific morpha...
متن کاملRecognition of Face Expression using Color Space
Face expression recognition can be stated as „identifying the expression of an individual from images of the face‟. Most of the existing systems of facial expression recognition focus on gray scale image features. This paper describes the novel approaches for effectively recognizing the facial expressions. In facial expression recognition (FER) framework, initially the face region of the image ...
متن کامل