Epigraphical splitting for solving constrained convex formulations of inverse problems with proximal tools
نویسندگان
چکیده
We propose a proximal approach to deal with a class of convex variational problems involving nonlinear constraints. A large family of constraints, proven to be effective in the solution of inverse problems, can be expressed as the lower level set of a sum of convex functions evaluated over different, but possibly overlapping, blocks of the signal. For such constraints, the associated projection operator generally does not have a simple form. We circumvent this difficulty by splitting the lower level set into as many epigraphs as functions involved in the sum. A closed half-space constraint is also enforced, in order to limit the sum of the introduced epigraphical variables to the upper bound of the original lower level set. In this paper, we focus on a family of constraints involving linear transforms of distance functions to a convex set or `1,p norms with p ∈ {1, 2,+∞}. In these cases, the projection onto the epigraph of the involved function has a closed form expression. The proposed approach is validated in the context of image restoration with missing samples, by making use of constraints based on Non-Local Total Variation. Experiments show that our method leads to significant improvements in term of convergence speed over existing algorithms for solving similar constrained problems. A second application to a pulse shape design problem is provided in order to illustrate the flexibility of the proposed approach.
منابع مشابه
Epigraphical splitting for solving constrained convex optimization problems with proximal tools – extended version
We propose a proximal approach to deal with a class of convex variational problems involving nonlinear constraints. A large family of constraints, proven to be effective in the solution of inverse problems, can be expressed as the lower level set of a sum of convex functions evaluated over different blocks of the linearly-transformed signal. For such constraints, the associated projection opera...
متن کاملEpigraphical projection and proximal tools for solving constrained convex optimization problems
We propose a proximal approach to deal with convex optimization problems involving nonlinear constraints. A large family of such constraints, proven to be effective in the solution of inverse problems, can be expressed as the lower level set of a sum of convex functions evaluated over different, but possibly overlapping, blocks of the signal. For this class of constraints, the associated projec...
متن کاملA Proximal Approach for Sparse Multiclass SVM
Sparsity-inducing penalties are useful tools to design multiclass support vector machines (SVMs). In this paper, we propose a convex optimization approach for efficiently and exactly solving the multiclass SVM learning problem involving a sparse regularization and the multiclass hinge loss formulated by [1]. We provide two algorithms: the first one dealing with the hinge loss as a penalty term,...
متن کاملEpigraphical Projection for Solving Least Squares Anscombe Transformed Constrained Optimization Problems
This papers deals with the restoration of images corrupted by a non-invertible or ill-conditioned linear transform and Poisson noise. Poisson data typically occur in imaging processes where the images are obtained by counting particles, e.g., photons, that hit the image support. By using the Anscombe transform, the Poisson noise can be approximated by an additive Gaussian noise with zero mean a...
متن کاملAn efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems
Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...
متن کامل