Photoreaction of mutated LOV photoreceptor domains from Chlamydomonas reinhardtii with aliphatic mercaptans: implications for the mechanism of wild type LOV.

نویسندگان

  • Karin Lanzl
  • Madlene V Sanden-Flohe
  • Roger-Jan Kutta
  • Bernhard Dick
چکیده

Irradiation of the LOV1 domain from the blue-light photoreceptor phototropin of the green alga Chlamydomonas reinhardtii leads to the formation of a covalent adduct of the sulfur atom of cysteine 57 to the carbon C(4a) in the chromophore FMN. This reaction is not possible in the mutant LOV1-C57G in which this cysteine is replaced by glycine. Irradiation of LOV1-C57G in the absence of oxygen but in the presence of aliphatic mercaptans or thioethers leads to the formation of a species with an absorption maximum at 615 nm, which is identified as the neutral radical FMNH . When oxygen is admitted, the reaction is completely reversible. Irradiation of LOV1-C57G in the presence of methylmercaptan CH(3)SH under oxygen-free conditions yields, in addition to FMNH , a third species with a single absorption maximum at 379 nm. This species is stable against oxygen and is also formed when the irradiation is performed in the presence of oxygen. This species is assigned to the adduct between CH(3)SH and FMN. In aqueous solution the photoreaction of CH(3)SH with FMN leads to the fully reduced hydroquinone form FMNH(2) or its anion FMNH(-). Adduct formation apparently requires the protein cage. After formation, the adduct is stable for hours inside the protein, but decomposes immediately upon denaturation. The implications of these observations for the mechanism of adduct formation in wild type LOV domains are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the reaction mechanism of adduct formation in LOV domains of the plant blue-light receptor phototropin.

The blue-light sensitive photoreceptor, phototropin, is a flavoprotein which regulates the phototropism response of higher plants. The photoinduced triplet state and the photoreactivity of the flavin-mononucleotide (FMN) cofactor in two LOV domains of Avena sativa, Adiantum capillus-veneris, and Chlamydomonas reinhardtii phototropin have been studied by time-resolved electron paramagnetic reson...

متن کامل

Photochemical properties of the flavin mononucleotide-binding domains of the phototropins from Arabidopsis, rice, and Chlamydomonas reinhardtii.

Phototropins (phot1 and phot2, formerly designated nph1 and npl1) are blue-light receptors that mediate phototropism, blue light-induced chloroplast relocation, and blue light-induced stomatal opening in Arabidopsis. Phototropins contain two light, oxygen, or voltage (LOV) domains at their N termini (LOV1 and LOV2), each a binding site for the chromophore flavin mononucleotide (FMN). Their C te...

متن کامل

Switching from adduct formation to electron transfer in a light-oxygen-voltage domain containing the reactive cysteine.

LOV (light-, oxygen- or voltage-sensitive) domains act as photosensory units of many prokaryotic and eukaryotic proteins. Upon blue light excitation they undergo a photocycle via the excited triplet state of their flavin chromophore yielding the flavin-cysteinyl adduct. Adduct formation is highly conserved among all LOV domains and constitutes the primary step of LOV domain signaling. But recen...

متن کامل

Dynamic switching mechanisms in LOV1 and LOV2 domains of plant phototropins.

LOV domains are the light-sensitive portion of plant phototropins. They absorb light through a flavin cofactor, photochemically form a covalent bond between the chromophore and a cysteine residue in the protein, and proceed to mediate activation of an attached kinase domain. Although the photoreaction itself is now well-characterized experimentally and computationally, it is still unclear how t...

متن کامل

Investigation of an Optimized Context for the Expression of GFP as a Reporter Gene in Chlamydomonas Reinhardtii

Background: Chlamydomonas reinhardtii is a novel recombinant eukaryotic expression system with many advantages including fast growth rate, rapid scalability, absence of human pathogens and the ability to fold and assemble complex proteins accurately, however, obstacle relatively low expression level necessitates optimizing foreign gene expression in this system. The Green Fluorescent Protein (G...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 12 25  شماره 

صفحات  -

تاریخ انتشار 2010