Ab initio-predicted micro-mechanical performance of refractory high-entropy alloys
نویسندگان
چکیده
Recently developed high-entropy alloys (HEAs) consisting of multiple principal elements represent a new field of metallurgy and have demonstrated appealing properties for a wide range of applications. Using ab initio alloy theory, we reveal the alloying effect on the elastic properties and the ideal tensile strength (ITS) in the [001] direction of four body-centered cubic (bcc) refractory HEAs based on Zr, V, Ti, Nb, and Hf. We find that these HEAs show high elastic anisotropy and large positive Cauchy pressure, suggesting good extrinsic ductility. Starting from ZrNbHf, it is found that the ITS decreases with equimolar Ti addition. On the other hand, if both Ti and V are added to ZrNbHf, the ITS is enhanced by about 42%. An even more captivating effect is the ITS increase by about 170%, if Ti and V are substituted for Hf. The alloying effect on the ITS is explained by the d-band filling. An intrinsic brittle-to-ductile transition is found in terms of the failure mode under uniaxial tension. These investigations suggest that intrinsically ductile HEAs with high ideal strength can be achieved by controlling the proportion of group four elements to group five elements.
منابع مشابه
Ab Initio Predicted Alloying Effects on the Elastic Properties of AlxHf1−xNbTaTiZr High Entropy Alloys
Using ab initio alloy theory, we investigate the equilibrium bulk properties and elastic mechanics of the single bcc solid-solution AlxHf1−xNbTaTiZr (x = 0–0.7, 1.0) high entropy alloys. Ab initio predicted equilibrium volume is consistent with the available experiment. We make a detailed investigation of the alloying effect of Al and Hf on the equilibrium volume, elastic constants and polycrys...
متن کاملSearching for Next Single-Phase High-Entropy Alloy Compositions
There has been considerable technological interest in high-entropy alloys (HEAs) since the initial publications on the topic appeared in 2004. However, only several of the alloys investigated are truly single-phase solid solution compositions. These include the FCC alloys CoCrFeNi and CoCrFeMnNi based on 3d transition metals elements and BCC alloys NbMoTaW, NbMoTaVW, and HfNbTaTiZr based on ref...
متن کاملA Review of Solid-Solution Models of High-Entropy Alloys Based on Ab Initio Calculations
Similar to the importance of XRD in experiments, ab initio calculations, as a powerful tool, have been applied to predict the new potential materials and investigate the intrinsic properties of materials in theory. As a typical solid-solution material, the large degree of uncertainty of high-entropy alloys (HEAs) results in the difficulty of ab initio calculations application to HEAs. The prese...
متن کاملHigh-throughput and data mining with ab initio methods
Accurate ab initio methods for performing quantum mechanical calculations have been available for many years, but their speed, complexity and instability have generally constrained researchers to studying only a few systems at a time. However, advances in computer speed and ab initio algorithms have now created fast and robust codes, where large numbers of calculations can be performed automati...
متن کاملInterplay between Lattice Distortions, Vibrations and Phase Stability in NbMoTaW High Entropy Alloys
Refractory high entropy alloys (HEA), such as BCC NbMoTaW, represent a promising materials class for next-generation high-temperature applications, due to their extraordinary mechanical properties. A characteristic feature of HEAs is the formation of single-phase solid solutions. For BCC NbMoTaW, recent computational studies revealed, however, a B2(Mo,W;Nb,Ta)-ordering at ambient temperature. T...
متن کامل