Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA.
نویسندگان
چکیده
The results of administering escalating, i.v. doses of targeted nanoparticles containing a siRNA targeting the M2 subunit of ribonucleotide reductase to non-human primates are reported. The nanoparticles consist of a synthetic delivery system that uses a linear, cyclodextrin-containing polycation, transferrin (Tf) protein targeting ligand, and siRNA. When administered to cynomolgus monkeys at doses of 3 and 9 mg siRNA/kg, the nanoparticles are well tolerated. At 27 mg siRNA/kg, elevated levels of blood urea nitrogen and creatinine are observed that are indicative of kidney toxicity. Mild elevations in alanine amino transferase and aspartate transaminase at this dose level indicate that the liver is also affected to some extent. Analysis of complement factors does not reveal any changes that are clearly attributable to dosing with the nanoparticle formulation. Detection of increased IL-6 levels in all animals at 27 mg siRNA/kg and increased IFN-gamma in one animal indicate that this high dose level produces a mild immune response. Overall, no clinical signs of toxicity clearly attributable to treatment are observed. The multiple administrations spanning a period of 17-18 days enable assessment of antibody formation against the human Tf component of the formulation. Low titers of anti-Tf antibodies are detected, but this response is not associated with any manifestations of a hypersensitivity reaction upon readministration of the targeted nanoparticle. Taken together, the data presented show that multiple, systemic doses of targeted nanoparticles containing nonchemically modified siRNA can safely be administered to non-human primates.
منابع مشابه
Potent siRNA inhibitors of ribonucleotide reductase subunit RRM2 reduce cell proliferation in vitro and in vivo.
PURPOSE Ribonucleotide reductase (RR) is a therapeutic target for DNA replication-dependent diseases such as cancer. Here, a potent small interfering RNA (siRNA) duplex against the M2 subunit of RR (RRM2) is developed and shown to reduce the growth potential of cancer cells both in vitro and in vivo. EXPERIMENTAL DESIGN Three anti-RRM2 siRNAs were identified via computational methods, and the...
متن کاملModulating ICBP90 to suppress human ribonucleotide reductase M2 induction restores sensitivity to hydroxyurea cytotoxicity.
BACKGROUND Ribonucleotide reductase (RR) inhibition by hydroxyurea (HU) causes deoxyribonucleotide (dNTP) depletion, which activates the replication checkpoint, a part of the S-phase checkpoint that responds to DNA damage by inhibiting late origin firing. It also transactivates RR and other genes involved in DNA replication and repair. ICBP90 (overexpressed in breast cancer) is a novel Rb-assoc...
متن کاملPotent subunit-specific effects on cell growth and drug sensitivity from optimised siRNA-mediated silencing of ribonucleotide reductase
Ribonucleotide reductase (RR) has an essential role in DNA synthesis and repair and is a therapeutic target in a number of different cancers. Previous studies have shown that RNAi-mediated knockdown of either the RRM1 or RRM2 subunit sensitizes cells to the cytotoxic effects of the nucleoside analogs and more recently it has been shown that RRM2 knockdown itself has a growth inhibitory effect. ...
متن کاملAn analysis of human equilibrative nucleoside transporter-1, ribonucleotide reductase subunit M1, ribonucleotide reductase subunit M2, and excision repair cross-complementing gene-1 expression in patients with resected pancreas adenocarcinoma: Implications for adjuvant treatment
متن کامل
Herpes simplex virus ribonucleotide reductase induced in infected BHK-21/C13 cells: biochemical evidence for the existence of two non-identical subunits, H1 and H2.
In nearly all systems studied, ribonucleotide reductase consists of two non-identical subunits. We present here the results of our study on herpes simplex virus (HSV) ribonucleotide reductase in favour of the existence of two subunits, H1 and H2, different from the mammalian subunits, M1 and M2. First, although the viral subunits could not be separated by Blue Sepharose chromatography (unlike m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 104 14 شماره
صفحات -
تاریخ انتشار 2007