Vitamin D3 induces autophagy of human myeloid leukemia cells.

نویسندگان

  • Jianrong Wang
  • Huiqin Lian
  • Ying Zhao
  • Mara A Kauss
  • Samantha Spindel
چکیده

Vitamin D3 causes potent suppression of various cancer cells; however, significant supraphysiological concentrations of this compound are required for antineoplastic effects. Current combinatorial therapies with vitamin D3 are restricted to differentiation effects. It remains uncertain if autophagy is involved in vitamin D3 inhibition on leukemia cells. Here we show that besides triggering differentiation and inhibiting apoptosis, which was previously known, vitamin D3 triggers autophagic death in human myeloid leukemia cells. Inhibiting differentiation does not efficiently diminish vitamin D3 suppression on leukemia cells. Vitamin D3 up-regulates Beclin1, which binds to class III phosphatidylinositol 3-kinase to trigger autophagy. Vitamin D3 phosphorylates Bad in its BH3 domain, resulting in disassociation of the apoptotic Bad-Bcl-xL complex and association of Bcl-xL with Beclin1 and ultimate suppression of apoptotic signaling. Knockdown of Beclin1 eliminates vitamin D3-induced autophagy and inhibits differentiation but activates apoptosis, suggesting that Beclin1 is required for both autophagy and differentiation, and autophagy cooperates with differentiation but excludes apoptosis, in which Beclin1 acts as an interface for these three different cascades. Moreover, additional up-regulation of autophagy, but not apoptosis, dramatically improves vitamin D3 inhibition on leukemia cells. These findings extend our understanding of the action of vitamin D3 in antineoplastic effects and the role of Beclin1 in regulating multiple cellular cascades and suggest a potentially promising strategy with a significantly better antileukemia effect.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CDK Blockade Using AT7519 Suppresses Acute Myeloid Leukemia Cell Survival through the Inhibition of Autophagy and Intensifies the Anti-leukemic Effect of Arsenic Trioxide

The strong storyline behind the critical role of cyclin-dependent kinase (CDK) inhibitor proteinsin natural defense against malignant transformation not only represents a heroic perspective forthese proteins, but also provides a bright future for the application of small molecule inhibitorsof CDKs in the novel cancer treatment strategies. The results of the present study revea...

متن کامل

CDK Blockade Using AT7519 Suppresses Acute Myeloid Leukemia Cell Survival through the Inhibition of Autophagy and Intensifies the Anti-leukemic Effect of Arsenic Trioxide

The strong storyline behind the critical role of cyclin-dependent kinase (CDK) inhibitor proteinsin natural defense against malignant transformation not only represents a heroic perspective forthese proteins, but also provides a bright future for the application of small molecule inhibitorsof CDKs in the novel cancer treatment strategies. The results of the present study revea...

متن کامل

Characterization of a vitamin D3-resistant human chronic myelogenous leukemia cell line.

A variant of the chronic myelogenous leukemia cell line, RWLeu-4, that is resistant to the antiproliferative effects of vitamin D3 was established. Although RWLeu-4 proliferation is inhibited by 1 nmol/L vitamin D3, the resistant cells (JMRD3) continue to proliferate in the presence of 100 nmol/L vitamin D3. Both cells express similar patterns of differentiation-specific antigens after treatmen...

متن کامل

اثر زهر زنبور عسل برروی قدرت تمایزی-D آلفا توکوفرول سوکسینات (ویتامین E) در رده سلول سرطانی حاد پرومیلوسیت HL-60

Background: Acute promyelocytic leukemia is the most malignant type of myeloid leukemia characterized by chromosomal translocation (15 and 17) and also blocking the cells in promyelocytic stage of differentiation into myeloid. Nowadays, differentiation therapy is used to treat leukemia. Previous studies indicate that vitamin E inhibits proliferation and also induces differentiation of HL-60 cel...

متن کامل

Nicotinamide cooperates with retinoic acid and 1,25-dihydroxyvitamin D(3) to regulate cell differentiation and cell cycle arrest of human myeloblastic leukemia cells.

Nicotinamide, the amide derivative of vitamin B(3), cooperates with retinoic acid (RA), a form of vitamin A, and 1,25-dihydroxyvitamin D(3) (D3), to regulate cell differentiation and proliferation of human myeloblastic leukemia cells. In human myeloblastic leukemia cells, RA or D3 are known to cause MAPK signaling leading to myeloid or monocytic differentiation and G0 cell cycle arrest. In this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 283 37  شماره 

صفحات  -

تاریخ انتشار 2008