Analysis of Solar Thermochemical Water-Splitting Cycles for Hydrogen Production

نویسندگان

  • Ali T-Raissi
  • Mark Paster
چکیده

Approach • Review all published papers, reports, patents, etc. in the past 25+ years that relate to thermochemical water-splitting cycles, in general, and solar driven cycles, in particular. • Use FactSageTM program to perform chemical equilibrium calculations. • Employ HYSYS/ASPEN Plus chemical process simulation (CPS) program for developing process flowsheet, process analyses and optimization. • Compare the performance characteristics and costs of the University of Tokyo-3 (UT-3) and sulfuriodine (S-I) TCWSCs. • Identify processes that especially benefit from the solar interface. • Use chemical process flowsheet analysis to identify new processes/cycles or modifications of the existing cycles that improve performance and facilitate better interface with solar heat source.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficiency maximization in solar-thermochemical fuel production: challenging the concept of isothermal water splitting.

Widespread adoption of solar-thermochemical fuel production depends on its economic viability, largely driven by the efficiency of use of the available solar resource. Herein, we analyze the efficiency of two-step cycles for thermochemical hydrogen production, with emphasis on efficiency. Owing to water thermodynamics, isothermal H2 production is shown to be impractical and inefficient, irrespe...

متن کامل

Solar thermochemical splitting of water to generate hydrogen.

Solar photochemical means of splitting water (artificial photosynthesis) to generate hydrogen is emerging as a viable process. The solar thermochemical route also promises to be an attractive means of achieving this objective. In this paper we present different types of thermochemical cycles that one can use for the purpose. These include the low-temperature multistep process as well as the hig...

متن کامل

Using In-situ Techniques to Probe High Temperature Reactions: Thermochemical Cycles for the Production of Synthetic Fuels from Co2 Andwater

Ferrites are promising materials for enabling solar-thermochemical cycles. Such cycles utilize solar-thermal energy to reduce the metal oxide, which is then re-oxidized by H2O or CO2, producing H2 or CO, respectively. Mixing ferrites with zirconia or yttria-stabilized zirconia (YSZ) greatly improves their cyclability. In order to understand this system, we have studied the behavior of iron oxid...

متن کامل

Thermodynamic and kinetic assessments of strontium-doped lanthanum manganite perovskites for two-step thermochemical water splitting

Solar-driven thermochemical water splitting using non-stoichiometric oxides has emerged as an attractive technology for solar fuel production. The most widely considered oxide for this purpose is ceria, but the extreme temperatures required to achieve suitable levels of reduction introduce challenges in reactor design and operation, leading to efficiency penalties. Here, we provide a quantitati...

متن کامل

Solar Hydrogen Production via a Samarium Oxide-Based Thermochemical Water Splitting Cycle

The computational thermodynamic analysis of a samarium oxide-based two-step solar thermochemical water splitting cycle is reported. The analysis is performed using HSC chemistry software and databases. The first (solar-based) step drives the thermal reduction of Sm2O3 into Sm and O2. The second (non-solar) step corresponds to the production of H2 via a water splitting reaction and the oxidation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003