Repairing People Trajectories based on Point Clustering
نویسندگان
چکیده
This paper presents a method for improving any object tracking algorithm based on machine learning. During the training phase, important trajectory features are extracted which are then used to calculate a confidence value of trajectory. The positions at which objects are usually lost and found are clustered in order to construct the set of ‘lost zones’ and ‘found zones’ in the scene. Using these zones, we construct a triplet set of zones i.e. 3 zones: In/Out zone (zone where an object can enter or exit the scene), ‘lost zone’ and ‘found zone’. Thanks to these triplets, during the testing phase, we can repair the erroneous trajectories according to which triplet they are most likely to belong to. The advantage of our approach over the existing state of the art approaches is that (i) this method does not depend on a predefined contextual scene, (ii) we exploit the semantic of the scene and (iii) we have proposed a method to filter out noisy trajectories based on their confidence value.
منابع مشابه
Assessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories
In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...
متن کاملMeasuring the Similarity of Trajectories Using Fuzzy Theory
In recent years, with the advancement of positioning systems, access to a large amount of movement data is provided. Among the methods of discovering knowledge from this type of data is to measure the similarity of trajectories resulting from the movement of objects. Similarity measurement has also been used in other data mining methods such as classification and clustering and is currently, an...
متن کاملA Framework of Mining Semantic Regions from Trajectories
With the pervasive use of mobile devices with location sensing and positioning functions, such as Wi-Fi and GPS, people now are able to acquire present locations and collect their movement. As the availability of trajectory data prospers, mining activities hidden in raw trajectories becomes a hot research problem. Given a set of trajectories, prior works either explore density-based approaches ...
متن کاملMotion Segmentation by Velocity Clustering with Estimation of Subspace Dimension
The performance of clustering based motion segmentation methods depends on the dimension of the subspace where the point trajectories are projected. This paper presents a strategy for estimating the best subspace dimension using a novel clustering error measure. For each obtained segmentation, the proposed measure estimates the average least square error between the point trajectories and synth...
متن کاملProceedings of the acm sigkdd
We describe a visual analytics method supporting the analysis of two different types of spatio-temporal data, point events and trajectories of moving agents. The method combines clustering with interactive visual displays, in particular, map and space-time cube. We demonstrate the use of the method by applying it to two datasets from the VAST Challenge 2008: evacuation traces (trajectories of p...
متن کامل