Biomechanical Analysis of the Human Finger Extensor Mechanism during Isometric Pressing

نویسندگان

  • Dan Hu
  • David Howard
  • Lei Ren
چکیده

This study investigated the effects of the finger extensor mechanism on the bone-to-bone contact forces at the interphalangeal and metacarpal joints and also on the forces in the intrinsic and extrinsic muscles during finger pressing. This was done with finger postures ranging from very flexed to fully extended. The role of the finger extensor mechanism was investigated by using two alternative finger models, one which omitted the extensor mechanism and another which included it. A six-camera three-dimensional motion analysis system was used to capture the finger posture during maximum voluntary isometric pressing. The fingertip loads were recorded simultaneously using a force plate system. Two three-dimensional biomechanical finger models, a minimal model without extensor mechanism and a full model with extensor mechanism (tendon network), were used to calculate the joint bone-to-bone contact forces and the extrinsic and intrinsic muscle forces. If the full model is assumed to be realistic, then the results suggest some useful biomechanical advantages provided by the tendon network of the extensor mechanism. It was found that the forces in the intrinsic muscles (interosseus group and lumbrical) are significantly reduced by 22% to 61% due to the action of the extensor mechanism, with the greatest reductions in more flexed postures. The bone-to-bone contact force at the MCP joint is reduced by 10% to 41%. This suggests that the extensor mechanism may help to reduce the risk of injury at the finger joints and also to moderate the forces in intrinsic muscles. These apparent biomechanical advantages may be a result of the extensor mechanism's distinctive interconnected fibrous structure, through which the contraction of the intrinsic muscles as flexors of the MCP joint can generate extensions at the DIP and PIP joints.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biomechanical Analysis of Force Distribution in Human Finger Extensor Mechanisms

The complexities of the function and structure of human fingers have long been recognised. The in vivo forces in the human finger tendon network during different activities are critical information for clinical diagnosis, surgical treatment, prosthetic finger design, and biomimetic hand development. In this study, we propose a novel method for in vivo force estimation for the finger tendon netw...

متن کامل

Current Biomechanical Models of the Index Finger Fail to Predict Experimental Observations

Existing computational models of the human fingers are simplistic and do not capture the physics of interactions of the different components of the extensor mechanism. These models, though widely used in the literature to model finger mechanics have not been validated with experimental data. In this paper, we rigorously validate three index finger biomechanical models : the normative model deve...

متن کامل

An Extensor Mechanism for an Anatomical Robotic Hand

The human finger possesses a structure called the extensor mechanism, a web-like collection of tendinous material that lies on the dorsal side of each finger and connects the controlling muscles to the bones of the finger. In past robotic hand designs, extensor mechanisms have generally not been employed due in part to their complexity and a lack of understanding of their utility. This paper pr...

متن کامل

Biomechanical analysis of the normal and reconstructed human hand: Prediction of muscle forces in pinch and grasp

In this work we present a biomechanical model of the normal and reconstructed human hand. The objective of this model is to predict muscle forces during the following three tasks: tip pinch, key pinch and grasp. The model takes into account all the available tendons in the fingers. Two common tendon transfers, to reconstruct the pathological hands, are then simulated. The brachioradialis BR tra...

متن کامل

An Anatomical Variation of Extensor Indicis Muscle: A Case Report

The extensor indicis is a narrow, elongated skeletal muscle in the deep layer of the dorsal forearm that originates from the one third of the distal posterior surface of the shaft of ulna below the origin of the extensor pollicis longos and interosseous membrane. It runs through the fourth tendon compartment with the extensor digitorum under the extensor retinaculum. The extensor indicis joins ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014