On Thue equations of splitting type over function fields

نویسندگان

  • Volker Ziegler
  • VOLKER ZIEGLER
  • V. ZIEGLER
چکیده

In this paper we consider Thue equations of splitting type over the ring k[T ], i.e. they have the form X(X − p1Y ) · · · (X − pd−1Y )− Y d = ξ, with p1, . . . , pd−1 ∈ k[T ] and ξ ∈ k. In particular we show that such Thue equations have only trivial solutions provided the degree of pd−1 is large, with respect to the degree of the other parameters p1, . . . , pd−2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Parametric Family of Thue Inequalities over Function Fields

is called a Thue equation, due to Thue [22] who proved, in the case R = Z, that such an equation has finitely many solutions. In the last decade, starting with the result of Thomas in [21], several families (at the moment up to degree 8; see [9] and the references mentioned therein) of Thue equations have been considered, where the coefficients of the form Fc(X,Y ) depend on an integral paramet...

متن کامل

Thue equations and CM-fields

We obtain a polynomial type upper bound for the size of the integral solutions of Thue equations F (X,Y ) = b defined over a totally real number field K, assuming that F (X, 1) has a root α such that K(α) is a CM-field. Furthermore, we give an algorithm for the computation of the integral solutions of such an equation.

متن کامل

On Correspondence between Solutions of a Parametric Family of Cubic Thue Equations and Isomorphic Simplest Cubic Fields

We give a correspondence between non-trivial solutions to a parametric family of cubic Thue equations X − mXY − (m + 3)XY 2 − Y 3 = k where k | m+3m+9 and isomorphic simplest cubic fields. By applying R. Okazaki’s result for isomorphic simplest cubic fields, we obtain all solutions to the family of cubic Thue equations for k | m + 3m + 9.

متن کامل

On Correspondence between Solutions of a Parametric Family of Cubic Thue Equations and Non-isomorphic Simplest Cubic Fields

We give a correspondence between non-trivial solutions to a parametric family of cubic Thue equations X − mXY − (m + 3)XY 2 − Y 3 = k where k | m + 3m+ 9 and non-isomorphic simplest cubic fields. By applying R. Okazaki’s result for non-isomorphic simplest cubic fields, we obtain all solutions to the family of cubic Thue equations for k | m + 3m+ 9.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007