Forecasting influenza-like illness dynamics for military populations using neural networks and social media

نویسندگان

  • Svitlana Volkova
  • Ellyn Ayton
  • Katherine Porterfield
  • Courtney D Corley
چکیده

This work is the first to take advantage of recurrent neural networks to predict influenza-like illness (ILI) dynamics from various linguistic signals extracted from social media data. Unlike other approaches that rely on timeseries analysis of historical ILI data and the state-of-the-art machine learning models, we build and evaluate the predictive power of neural network architectures based on Long Short Term Memory (LSTMs) units capable of nowcasting (predicting in "real-time") and forecasting (predicting the future) ILI dynamics in the 2011 - 2014 influenza seasons. To build our models we integrate information people post in social media e.g., topics, embeddings, word ngrams, stylistic patterns, and communication behavior using hashtags and mentions. We then quantitatively evaluate the predictive power of different social media signals and contrast the performance of the-state-of-the-art regression models with neural networks using a diverse set of evaluation metrics. Finally, we combine ILI and social media signals to build a joint neural network model for ILI dynamics prediction. Unlike the majority of the existing work, we specifically focus on developing models for local rather than national ILI surveillance, specifically for military rather than general populations in 26 U.S. and six international locations., and analyze how model performance depends on the amount of social media data available per location. Our approach demonstrates several advantages: (a) Neural network architectures that rely on LSTM units trained on social media data yield the best performance compared to previously used regression models. (b) Previously under-explored language and communication behavior features are more predictive of ILI dynamics than stylistic and topic signals expressed in social media. (c) Neural network models learned exclusively from social media signals yield comparable or better performance to the models learned from ILI historical data, thus, signals from social media can be potentially used to accurately forecast ILI dynamics for the regions where ILI historical data is not available. (d) Neural network models learned from combined ILI and social media signals significantly outperform models that rely solely on ILI historical data, which adds to a great potential of alternative public sources for ILI dynamics prediction. (e) Location-specific models outperform previously used location-independent models e.g., U.S. only. (f) Prediction results significantly vary across geolocations depending on the amount of social media data available and ILI activity patterns. (g) Model performance improves with more tweets available per geo-location e.g., the error gets lower and the Pearson score gets higher for locations with more tweets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Review of Epidemic Forecasting Using Artificial Neural Networks

Background and aims: Since accurate forecasts help inform decisions for preventive health-careintervention and epidemic control, this goal can only be achieved by making use of appropriatetechniques and methodologies. As much as forecast precision is important, methods and modelselection procedures are critical to forecast precision. This study aimed at providing an overview o...

متن کامل

Similarity measurement for describe user images in social media

Online social networks like Instagram are places for communication. Also, these media produce rich metadata which are useful for further analysis in many fields including health and cognitive science. Many researchers are using these metadata like hashtags, images, etc. to detect patterns of user activities. However, there are several serious ambiguities like how much reliable are these informa...

متن کامل

Forecasting influenza in Hong Kong with Google search queries and statistical model fusion

BACKGROUND The objective of this study is to investigate predictive utility of online social media and web search queries, particularly, Google search data, to forecast new cases of influenza-like-illness (ILI) in general outpatient clinics (GOPC) in Hong Kong. To mitigate the impact of sensitivity to self-excitement (i.e., fickle media interest) and other artifacts of online social media data,...

متن کامل

Flood Forecasting Using Artificial Neural Networks: an Application of Multi-Model Data Fusion technique

Floods are among the natural disasters that cause human hardship and economic loss. Establishing a viable flood forecasting and warning system for communities at risk can mitigate these adverse effects. However, establishing an accurate flood forecasting system is still challenging due to the lack of knowledge about the effective variables in forecasting. The present study has indicated that th...

متن کامل

Using Social Media to Perform Local Influenza Surveillance in an Inner-City Hospital: A Retrospective Observational Study

BACKGROUND Public health officials and policy makers in the United States expend significant resources at the national, state, county, and city levels to measure the rate of influenza infection. These individuals rely on influenza infection rate information to make important decisions during the course of an influenza season driving vaccination campaigns, clinical guidelines, and medical staffi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017