HTR1A a Novel Type 1 Diabetes Susceptibility Gene on Chromosome 5p13-q13
نویسندگان
چکیده
BACKGROUND We have previously performed a genome-wide linkage study in Scandinavian Type 1 diabetes (T1D) families. In the Swedish families, we detected suggestive linkage (LOD≤2.2) to the chromosome 5p13-q13 region. The aim of our study was to investigate the linked region in search for possible T1D susceptibility genes. METHODOLOGY/PRINCIPAL FINDINGS Microsatellites were genotyped in the Scandinavian families to fine-map the previously linked region. Further, SNPs were genotyped in Swedish and Danish families as well as Swedish sporadic cases. In the Swedish families we detected genome-wide significant linkage to the 5-hydroxytryptamine receptor 1A (HTR1A) gene (LOD 3.98, p<9.8×10(-6)). Markers tagging two separate genes; the ring finger protein 180 (RNF180) and HTR1A showed association to T1D in the Swedish and Danish families (p<0.002, p<0.001 respectively). The association was not confirmed in sporadic cases. Conditional analysis indicates that the primary association was to HTR1A. Quantitative PCR show that transcripts of both HTR1A and RNF180 are present in human islets of Langerhans. Moreover, immunohistochemical analysis confirmed the presence of the 5-HTR1A protein in isolated human islets of Langerhans as well as in sections of human pancreas. CONCLUSIONS We have identified and confirmed the association of both HTR1A and RFN180, two genes in high linkage disequilibrium (LD) to T1D in two separate family materials. As both HTR1A and RFN180 were expressed at the mRNA level and HTR1A as protein in human islets of Langerhans, we suggest that HTR1A may affect T1D susceptibility by modulating the initial autoimmune attack or either islet regeneration, insulin release, or both.
منابع مشابه
Interaction and association analysis of a type 1 diabetes susceptibility locus on chromosome 5q11-q13 and the 7q32 chromosomal region in Scandinavian families.
We have previously reported suggestive linkage to chromosome 5p13-q13 in type 1 diabetic families. ISL1, a transcription factor involved in pancreas development, maps to this region. Sequencing of the ISL1 gene in patients and control subjects identified seven single nucleotide polymorphisms (SNPs) and one microsatellite in noncoding regions. Four haplotypes formed by six of these SNPs and one ...
متن کاملGenome-wide search for type 2 diabetes in Japanese affected sib-pairs confirms susceptibility genes on 3q, 15q, and 20q and identifies two new candidate Loci on 7p and 11p.
The genetic background that predisposes the Japanese population to type 2 diabetes is largely unknown. Therefore, we conducted a 10-cM genome-wide scan for type 2 diabetes traits in the 359 affected individuals from 159 families, yielding 224 affected sib-pairs of Japanese origin. Nonparametric multipoint linkage analyses performed in the whole population showed one suggestive linked region on ...
متن کاملEvidence for a novel type 1 diabetes susceptibility locus on chromosome 8.
Type 1 diabetes results from a combination of genetic susceptibility and environmental exposures. Susceptibility loci other than HLA and the insulin gene remain to be identified to account for the degree of familial clustering observed in this disorder. Early genome-wide scans provided suggestive evidence of linkage on chromosome 8q, prompting detailed analysis of this region. A total of 20 mic...
متن کاملGenome-wide and fine-mapping linkage studies of type 2 diabetes and glucose traits in the Old Order Amish: evidence for a new diabetes locus on chromosome 14q11 and confirmation of a locus on chromosome 1q21-q24.
We conducted a genome scan using a 10-cM map to search for genes linked to type 2 diabetes in 691 individuals from a founder population, the Old Order Amish. We then saturated two regions on chromosomes 1 and 14 showing promising linkage signals with additional markers to produce a approximately 2-cM map for fine mapping. Analyses of both discrete traits (type 2 diabetes and the composite trait...
متن کاملBrief Genetics Report Positional Candidate Gene Analysis of Lim Domain Homeobox Gene (Isl-1) on Chromosome 5q11-q13 in a French Morbidly Obese Population Suggests Indication for Association With Type 2 Diabetes
The Lim domain homeobox gene (Isl-1) is a positional candidate gene for obesity that maps on chromosome 5q11-q13, a locus linked to BMI and leptin levels in French Caucasians. Isl-1 might be involved in body weight regulation and glucose homeostasis via the activation of proglucagon gene expression, which encodes for glucagon and glucagon-like peptides. By mutation screening of 72 obese subject...
متن کامل