Synthesis and exceptional thermal stability of Mg-based bimetallic nanoparticles during hydrogenation.
نویسندگان
چکیده
Here we report the extraordinary thermal stability of Mg rich bimetallic nanoparticles (NPs), which is important for hydrogen storage technology. The enhanced NP stability is accomplished because of two critical improvements: (i) no void development within NPs (nanoscale Kirkendall effect) during their formation and (ii) suppressed Mg evaporation and NP hollowing during Mg hydrogenation at elevated temperature. The mechanism leading to the improved thermal stability of Mg-based bimetallic NPs is shown to be due to MgH2 hydride formation before evaporation can take place. These findings were tested for various compositions of Mg with Ni, Cu, and Ti, which are interesting combinations of materials for hydrogen storage systems. To achieve this we first demonstrate the synthesis mechanism of Mg-Ni and Mg-Cu NPs, which is well controlled at the single particle level, in order to accomplish multi-shell, alloy and intermetallic structures of interest for hydrogen storage tests. Aberration corrected transmission electron microscopy was carried out to unravel the detailed atomic structure and composition of the bimetallic NPs after production, processing, and hydrogenation. Finally, a simple and effective methodology is proposed for tuning the composition of the Mg-based bimetallic NPs based on the temperature-dependent nucleation behavior of NPs in the gas-phase.
منابع مشابه
A Fast Method for Synthesis Magnesium Hydroxide Nanoparticles, Thermal Stable and Flame Retardant Poly vinyl alcohol Nanocomposite
Magnesium hydroxide nanostructures as an effective flame retardant were synthesized by a facile and rapid microwave reaction. The effect of different surfactants such as cationic, anionic and polymeric on the morphology of magnesium hydroxide nanostructures was investigated. Nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform in...
متن کاملBimetallic palladium-gold dendrimer-encapsulated catalysts.
The synthesis, characterization, and catalytic properties of 1-3 nm-diameter bimetallic PdAu dendrimer-encapsulated catalysts are reported. Both alloy and core/shell PdAu nanoparticles were prepared. The catalytic hydrogenation of allyl alcohol was significantly enhanced in the presence of the alloy and core/shell PdAu nanoparticles as compared to mixtures of single-metal nanoparticles.
متن کاملSynthesis Magnesium Hydroxide Nanoparticles and Cellulose Acetate- Mg(OH)2-MWCNT Nanocomposite
Mg(OH)2 nanoparticles were synthesized by a rapid microwave reaction. The effect of sodium dodecyl sulfonate (SDS as anionic surfactant) and cetyl tri-methyl ammonium bromide (CTAB as cationic surfactant) on the morphology of magnesium hydroxide nanostructures was investigated. Multi wall carbon nano tubes was organo-modified for better dispersion in cellulose acetate matrix. The influence of M...
متن کاملSynthesis of Nickel/ Molybdenum Oxide Bimetallic Nanoparticles via Microwave Irradiation Technique
Nickel-molybdenum oxidebimetallic nanoparticles were synthesized in ethylene glycol using the microwave irradiation technique. According to the results, successive reduction of nickel and molybdenum ions, followed by thermal treatment of obtained nanoparticles led to formation of core-shell structured nickel-molybdenum oxide nanoparticles. According to the results, the thickness of the s...
متن کاملSolid-state synthesis of ordered mesoporous carbon catalysts via a mechanochemical assembly through coordination cross-linking
Ordered mesoporous carbons (OMCs) have demonstrated great potential in catalysis, and as supercapacitors and adsorbents. Since the introduction of the organic-organic self-assembly approach in 2004/2005 until now, the direct synthesis of OMCs is still limited to the wet processing of phenol-formaldehyde polycondensation, which involves soluble toxic precursors, and acid or alkali catalysts, and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 6 20 شماره
صفحات -
تاریخ انتشار 2014