Classifying Foliations of 3-manifolds via Branched Surfaces
نویسنده
چکیده
We use branched surfaces to define an equivalence relation on C1 codimension one foliations of any closed orientable 3-manifold that are transverse to some fixed nonsingular flow. There is a discrete metric on the set of equivalence classes with the property that foliations that are sufficiently close (up to equivalence) share important topological properties. ____________________ Date: January 10, 2006 2000 Mathematics Subject Classification. Primary: 57R30, 57M50, 57M10, 57M20, 57N10.
منابع مشابه
R-covered Branched Surfaces
We give sufficient conditions for an R-covered codimension one foliation F of a closed 3-manifold to be carried by an Rcovered branched surface; that is, a branched surface carrying only foliations with the R-covered property. These conditions can be readily verified for many examples. In cases where the branched surface is generated by disks, the R-covered property is stable for F in the sense...
متن کاملOn the k-nullity foliations in Finsler geometry
Here, a Finsler manifold $(M,F)$ is considered with corresponding curvature tensor, regarded as $2$-forms on the bundle of non-zero tangent vectors. Certain subspaces of the tangent spaces of $M$ determined by the curvature are introduced and called $k$-nullity foliations of the curvature operator. It is shown that if the dimension of foliation is constant, then the distribution is involutive...
متن کاملNormal surfaces in topologically finite 3–manifolds
This paper investigates normal surface theory in topologically finite 3–manifolds with ideal triangulations. Treated are closed and non– compact normal surfaces, the projective solution space and the projective admissible solution space, as well as the leaf spaces of the transversely measured singular codimension–one foliations defined by admissible solutions. AMS Classification 57M25, 57N10
متن کاملFoliations and Chern-Heinz inequalities
We extend the Chern-Heinz inequalities about mean curvature and scalar curvature of graphs of C2-functions to leaves of transversally oriented codimension one C2-foliations of Riemannian manifolds. That extends partially Salavessa’s work on mean curvature of graphs and generalize results of Barbosa-Kenmotsu-Oshikiri [3] and Barbosa-GomesSilveira [2] about foliations of 3-dimensional Riemannian ...
متن کاملThe Simplest Branched Surfaces for a Foliation
Given a foliation F of a closed 3-manifold and a Smale flow φ transverse to F, we associate a “simplest” branched surface with the pair (F, φ), which is unique up to two combinatorial moves. We show that all branched surfaces constructed from F and φ can be obtained from the simplest model by applying a finite sequence of these moves chosen so that each intermediate branched surface also carrie...
متن کامل