Packing and Minkowski Covering of Congruent Spherical Caps

نویسندگان

  • Masaharu TANEMURA
  • M. TANEMURA
چکیده

Let Ci (i = 1, ..., N) be the i-th open spherical cap of angular radius r and let Mi be its center under the condition that none of the spherical caps contains the center of another one in its interior. We consider the upper bound, rN (not the lower bound!) of r of the case in which the whole spherical surface of a unit sphere is completely covered with N congruent open spherical caps under the condition, sequentially for i = 2, ..., N – 1, that Mi is set on the perimeter of Ci–1, and that each area of the set ( ν= − 1 1 i Cν) Ci becomes maximum. In this study, for N = 2, ..., 9, we found out that the solutions of the above covering and the solutions of Tammes problem were strictly correspondent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Packing and Minkowski Covering of Congruent Spherical Caps on a Sphere , II : Cases of N = 10 , 11 , and 12

Let Ci (i = 1, ..., N) be the i-th open spherical cap of angular radius r and let Mi be its center under the condition that none of the spherical caps contains the center of another one in its interior. We consider the upper bound, rN, (not the lower bound!) of r of the case in which the whole spherical surface of a unit sphere is completely covered with N congruent open spherical caps under th...

متن کامل

Convexity and Combinatorics

Geir Agnarsson. George Mason University, Fairfax, VA. On Minkowski sum of simplices and their flags. We consider a Minkowski sum of k standard simplices in Rr and its chains of faces, for given k, r ∈ N. We define its flag polynomial in a direct and canonical way in terms of the k-th master polytope P (k). This polynomial is related to the well-known flag vector, and it has some nice algebraic ...

متن کامل

2 Packing and Covering

The basic problems in the classical theory of packings and coverings, the development of which was strongly influenced by the geometry of numbers and by crystallography, are the determination of the densest packing and the thinnest covering with congruent copies of a given body K. Roughly speaking, the density of an arrangement is the ratio between the total volume of the members of the arrange...

متن کامل

Upper Bounds for Packings of Spheres of Several Radii

We give theorems that can be used to upper bound the densities of packings of different spherical caps in the unit sphere and of translates of different convex bodies in Euclidean space. These theorems extend the linear programming bounds for packings of spherical caps and of convex bodies through the use of semidefinite programming. We perform explicit computations, obtaining new bounds for pa...

متن کامل

Covering and Packing with Spheres

We address the problem of covering R with congruent balls, while minimizing the number of balls that contain an average point. Considering the 1-parameter family of lattices defined by stretching or compressing the integer grid in diagonal direction, we give a closed formula for the covering density that depends on the distortion parameter. We observe that our family contains the thinnest latti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007