On Orthogonal Polynomials in Several Variables
نویسنده
چکیده
We report on the recent development on the general theory of orthogonal polynomials in several variables, in which results parallel to the theory of orthogonal polynomials in one variable are established using a vectormatrix notation.
منابع مشابه
On Discrete Orthogonal Polynomials of Several Variables
Let V be a set of points in R. Define a linear functional L on the space of polynomials, Lf = ∑ x∈V f(x)ρ(x), where ρ is a nonzero function on V . The structure of discrete orthogonal polynomials of several variables with respect to the bilinear form 〈f, g〉 = L(fg) is studied. For a given V , the subspace of polynomials that will generate orthogonal polynomials on V is identified. One result sh...
متن کاملOrthogonal Polynomials for Potentials of two Variables with External Sources
This publication is an exercise which extends to two variables the Christoffel’s construction of orthogonal polynomials for potentials of one variable with external sources. We generalize the construction to biorthogonal polynomials. We also introduce generalized Schur polynomials as a set of orthogonal, symmetric, non homogeneous polynomials of several variables, attached to Young tableaux.
متن کامل. C A ] 4 O ct 2 00 6 A SEMICLASSICAL PERSPECTIVE ON MULTIVARIATE ORTHOGONAL POLYNOMIALS
Differential properties for orthogonal polynomials in several variables are studied. We consider multivariate orthogonal polynomials whose gradients satisfy some quasi–orthogonality conditions. We obtain several characterizations for these polynomials including the analogous of the semiclas-sical Pearson differential equation, the structure relation and a differential– difference equation.
متن کاملKrall-type orthogonal polynomials in several variables
For a bilinear form obtained by adding a Dirac mass to a positive definite moment functional in several variables, explicit formulas of orthogonal polynomials are derived from the orthogonal polynomials associated with the moment functional. Explicit formula for the reproducing kernel is also derived and used to establish certain inequalities for classical orthogonal polynomials. MSC 2000 : 42C...
متن کاملMonomial orthogonal polynomials of several variables
A monomial orthogonal polynomial of several variables is of the form x−Qα(x) for a multiindex α ∈ N 0 and it has the least L2 norm among all polynomials of the form xα − P (x), where P and Qα are polynomials of degree less than the total degree of xα. We study monomial orthogonal polynomials with respect to the weight function ∏d+1 i=1 |xi| 2κi on the unit sphere Sd as well as for the related w...
متن کامل