The complexity of approximating MAPs for belief networks with bounded probabilities

نویسندگان

  • Ashraf M. Abdelbar
  • Stephen T. Hedetniemi
  • Sandra Mitchell Hedetniemi
چکیده

Probabilistic inference and maximum a posteriori (MAP) explanation are two important and related problems on Bayesian belief networks. Both problems are known to be NP-hard for both approximation and exact solution. In 1997, Dagum and Luby showed that efficiently approximating probabilistic inference is possible for belief networks in which all probabilities are bounded away from 0. In this paper, we show that the corresponding result for MAP explanation does not hold: finding, or approximating, MAPs for belief networks remains NP-hard for belief networks with probabilities bounded within the range [l, u] for any 0 6 l < 0.5 < u 6 1. Our results cover both deterministic and randomized approximation.  2000 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximating Bayesian Belief Networks by Arc Removal

Bayesian belief networks or causal probabilistic networks may reach a certain size and complexity where the computations involved in exact probabilistic inference on the network tend to become rather time consuming. Methods for approximating a network by a simpler one allow the computational complexity of probabilistic inference on the network to be reduced at least to some extend. We propose a...

متن کامل

An Optimal Approximation Algorithm for Bayesian Inference

Approximating the inference probability Pr X xjE e in any sense even for a single evidence node E is NP hard This result holds for belief networks that are allowed to contain extreme conditional probabilities that is conditional probabilities arbitrarily close to Nevertheless all previous approximation algorithms have failed to approximate e ciently many inferences even for belief networks with...

متن کامل

Approximating MAPs for Belief Networks is NP-Hard and Other Theorems

Finding rna.ximum a posteriori (MAP) assignments, also called Most Probable Explanations, is an important problem on Bayesian belief networks. Shimony has shown that finding MAPS is NPhard. In this paper, we show that approximating MAPS with a constant ratio bound is also NP-hard. In addition. we examine the complexity of two related problems which have been mentioned in the literature. We show...

متن کامل

Category: Algorithms and Architectures. Variational Belief Networks for Approximate Inference

Exact inference in large, densely connected probabilistic networks is computationally intractable, and approximate schemes are therefore of great importance. One approach is to use mean eld theory, in which the exact log-likelihood is bounded from below using a simpler approximating distribution. In the standard mean eld theory, the approximating distribution is factorial. We propose instead to...

متن کامل

Variational Belief Networks for Approximate Inference

Exact inference in large, densely connected probabilistic networks is computa-tionally intractable, and approximate schemes are therefore of great importance. One approach is to use mean eld theory, in which the exact log-likelihood is bounded from below using a simpler approximating distribution. In the standard mean eld theory, the approximating distribution is factorial. We propose instead t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Artif. Intell.

دوره 124  شماره 

صفحات  -

تاریخ انتشار 2000