Finding Efficient Circuits for Ensemble Computation

نویسندگان

  • Matti Järvisalo
  • Petteri Kaski
  • Mikko Koivisto
  • Janne H. Korhonen
چکیده

Given a Boolean function as input, a fundamental problem is to find a Boolean circuit with the least number of elementary gates (AND, OR, NOT) that computes the function. The problem generalises naturally to the setting of multiple Boolean functions: find the smallest Boolean circuit that computes all the functions simultaneously. We study an NP-complete variant of this problem titled Ensemble Computation and, especially, its relationship to the Boolean satisfiability (SAT) problem from both the theoretical and practical perspectives, under the two monotone circuit classes: OR-circuits and SUM-circuits. Our main result relates the existence of nontrivial algorithms for CNF-SAT with the problem of rewriting in subquadratic time a given OR-circuit to a SUM-circuit. Furthermore, by developing a SAT encoding for the ensemble computation problem and by employing state-of-the-art SAT solvers, we search for concrete instances that would witness a substantial separation between the size of optimal OR-circuits and optimal SUM-circuits. Our encoding allows for exhaustively checking all small witness candidates. Searching over larger witness candidates presents an interesting challenge for current SAT solver technology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Planar Microstrip Circuits Using Three-Dimensional Transmission Line Matrix Method

The frequency-dependent characteristics of microstrip planar circuits have been previously analyzed using several full-wave approaches. All those methods directly give characteristic of the circuits frequency by frequency. Computation time becomes important if these planar circuits have to be studied over a very large bandwidth. The transmission line matrix (TLM) method presented in this paper ...

متن کامل

Efficient Analysis of Plasmonic circuits using Differential Global Surface Impedance (DGSI) Model

Differential global surface impedance (DGSI) model, a rigorous approach, has been applied to the analysis of three dimensional plasmonic circuits. This model gives a global relation between the tangential electric field and the equivalent surface electric current on the boundary of an object. This approach helps one bring the unknowns to the boundary surface of an object and so avoid volumetric...

متن کامل

[Invited Paper] An Efficient Algorithm for Finding All DC Solutions of Nonlinear Circuits

An efficient algorithm is proposed for finding all DC solutions of nonlinear (not piecewise-linear) circuits with mathematical certainty. This algorithm is based on interval analysis, the LP test using the dual simplex method, the contraction method, and a special technique which makes the algorithm not require large memory space and not require copying tableaus. By numerical examples, it is sh...

متن کامل

Quantum computation as geometry.

Quantum computers hold great promise for solving interesting computational problems, but it remains a challenge to find efficient quantum circuits that can perform these complicated tasks. Here we show that finding optimal quantum circuits is essentially equivalent to finding the shortest path between two points in a certain curved geometry. By recasting the problem of finding quantum circuits ...

متن کامل

Computational Indistinguishability: Algorithms vs. Circuits

We present a simple proof to the existence of a probability ensemble with tiny support which cannot be distinguished from the uniform ensemble by any recursive computation. Since the support is tiny (i.e, sub-polynomial), this ensemble can be distinguished from the uniform ensemble by a (non-uniform) family of small circuits. It also provides an example of an ensemble which cannot be (recursive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012