Fine scale image registration in large-scale urban LIDAR point sets

نویسندگان

  • Maximilien Guislain
  • Julie Digne
  • Raphaëlle Chaine
  • Gilles Monnier
چکیده

Urban scenes acquisition is very often performed using laser scanners onboard a vehicle. In parallel, color information is also acquired through a set of coarsely aligned camera pictures. The question of combining both measures naturally arises for adding color to the 3D points or enhancing the geometry, but it faces important challenges. Indeed, 3D geometry acquisition is highly accurate while the images suffer from distortion and are only coarsely registered to the geometry. In this paper, we introduce a two-step method to register images to large-scale complex point clouds. Our method performs the image-to-geometry registration by iteratively registering the real image to a synthetic image obtained from the estimated camera pose and the point cloud, using either reflectance or normal information. First a coarse registration is performed by generating a wide-angle synthetic image and considering that small pitch and yaw rotations can be estimated as translations in the image plane. Then a fine registration is performed using a new image metric which is adapted to the difference of modality between the real and synthetic images. This new image metric is more resilient to missing data and large transformations than standard Mutual Information. In the process, we also introduce a method to generate synthetic images from a 3D point cloud that is adapted to large-scale urban scenes with occlusions and sparse areas. The efficiency of our algorithm is demonstrated both qualitatively and quantitatively on datasets of urban scans and associated images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DPML-Risk: An Efficient Algorithm for Image Registration

Targets and objects registration and tracking in a sequence of images play an important role in various areas. One of the methods in image registration is feature-based algorithm which is accomplished in two steps. The first step includes finding features of sensed and reference images. In this step, a scale space is used to reduce the sensitivity of detected features to the scale changes. Afterw...

متن کامل

Registration of Agia Sanmarina Lidar Data Using Surface Elements

Several approaches for automatic registration of terrestrial LIDAR data exist. However, they normally can not be compared to each other because of a lack of reference data. This is especially true for applications in urban areas. One dataset available for this purpose is a set of eight LIDAR scans from Agia Sanmarina, a Byzantine church in Greece, which has been made available by the ISPRS work...

متن کامل

Building Change Detection Using Old Aerial Images and New LiDAR Data

Building change detection is important for urban area monitoring, disaster assessment and updating geo-database. 3D information derived from image dense matching or airborne light detection and ranging (LiDAR) is very effective for building change detection. However, combining 3D data from different sources is challenging, and so far few studies have focused on building change detection using b...

متن کامل

Automatic Registration of Iphone Images to Laser Point Clouds of Urban Structures Using Shape Features

Fusion of 3D airborne laser (LIDAR) data and terrestrial optical imagery can be applied in 3D urban modeling and model up-dating. The most challenging aspect of the fusion procedure is registering the terrestrial optical images on the LIDAR point clouds. In this article, we propose an approach for registering these two different data from different sensor sources. As we use iPhone camera images...

متن کامل

Weakly Supervised Segmentation-aided Classification of Urban Scenes from 3d Lidar Point Clouds

We consider the problem of the semantic classification of 3D LiDAR point clouds obtained from urban scenes when the training set is limited. We propose a non-parametric segmentation model for urban scenes composed of anthropic objects of simple shapes, partionning the scene into geometrically-homogeneous segments which size is determined by the local complexity. This segmentation can be integra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Vision and Image Understanding

دوره 157  شماره 

صفحات  -

تاریخ انتشار 2017