High precision linear motor control via relay-tuning and iterative learning based on zero-phase filtering

نویسندگان

  • Kok Kiong Tan
  • Huifang Dou
  • Yangquan Chen
  • Tong Heng Lee
چکیده

In this paper, with a modest amount of modeling effort, a feedback–feedforward control structure is proposed for precision motion control of a permanent magnet linear motor (PMLM) for applications which are inherently repetitive in terms of the motion trajectories. First, a proportional integral derivative (PID) feedback controller is designed using a relay automatic tuning method. An iterative learning controller (ILC) based on zero-phase filtering is applied as feedforward controller to the existing relay-tuned PID feedback controller to enhance the trajectory tracking performance by utilizing the experience gained from the repeated execution of the same operations. Experimental results are presented to demonstrate the practical appeal and effectiveness of the proposed scheme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfect Tracking of Supercavitating Non-minimum Phase Vehicles Using a New Robust and Adaptive Parameter-optimal Iterative Learning Control

In this manuscript, a new method is proposed to provide a perfect tracking of the supercavitation system based on a new two-state model. The tracking of the pitch rate and angle of attack for fin and cavitator input is of the aim. The pitch rate of the supercavitation with respect to fin angle is found as a non-minimum phase behavior. This effect reduces the speed of command pitch rate. Control...

متن کامل

Learning Based Cross-coupled Control for Multi-axis High Precision Positioning Systems

In this paper, a controller featuring cross-coupled control and iterative learning control schemes is designed and implemented on a modular two-axis positioning system in order to improve both contour and tracking accuracy. Instead of using the standard contour estimation technique proposed with the variable gain cross-coupled control, a computationally efficient contour estimation technique is...

متن کامل

Design and Implementation of a High-Precision Position Controller for Permanent Magnet Synchronous Motor Based on a New Gain Scheduling Approach

The direct drive permanent magnet synchronous motor (DD-PMSM) is a suitable choice for high-precision position control applications. Among various control methods of this motor, the vector control approaches especially the field oriented control has a high-performance in the industrial drives. In this method, the components of stator current are controlled independently and as a result, the tor...

متن کامل

A Novel Self-tuning Zone PID Controller for Temperature Control via a PLC code

S7-1200 with Tia Portal technology has become a Standard function of distributed controlsystems. Self-Tuning methods belong to Programmable Controllers (PLC) techniques. PLCtechniques contain software packages for advanced control based on mathematical methods. S7-1200 tools are designed to increase the Process Capacity, yield, and quality of products. Most ofthe present time digital industry r...

متن کامل

B-spline network-based iterative learning control for trajectory tracking of a piezoelectric actuator

This paper presents the trajectory tracking approach of a piezoelectric actuator using an iterative learning control (ILC) scheme based on B-spline network (BSN) filtering. The ILC scheme adopts a state-compensated iterative learning formula, which compensates for the state difference between two consecutive iterations in order that the iterative learning can learn from the tracking errors of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Contr. Sys. Techn.

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2001