Near-wall hindered Brownian diffusion of nanoparticles examined by three-dimensional ratiometric total internal reflection fluorescence microscopy (3-D R-TIRFM)

نویسندگان

  • K. D. Kihm
  • A. Banerjee
  • C. K. Choi
  • T. Takagi
چکیده

A three-dimensional nanoparticle tracking technique using ratiometric total internal reflection fluorescence microscopy (R-TIRFM) is presented to experimentally examine the classic theory on the near-wall hindered Brownian diffusive motion. An evanescent wave field from the total internal reflection of a 488-nm bandwidth argon-ion laser is used to provide a thin illumination field on the order of a few hundred nanometers from the wall. Fluorescence-coated polystyrene spheres of 200±20 nm diameter (specific gravity=1.05) are used as tracers and a novel ratiometric analysis of their images allows the determination of fully three-dimensional particle locations and velocities. The experimental results show good agreement with the lateral hindrance theory, but show discrepancies from the normal hindrance theory. It is conjectured that the discrepancies can be attributed to the additional hindering effects, including electrostatic and electro-osmotic interactions between the negatively charged tracer particles and the glass surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical Tracking of Three-Dimensional Brownian Motion of Nanoparticles

Novel optical techniques are presented for three-dimensional tracking of nanoparticles; Optical Serial Sectioning Microscopy (OSSM) and Ratiometric Total Internal Reflection Fluorescent Microscopy (R-TIRFM). OSSM measures optically diffracted particle images, the so-called Point Spread Function (PSF), and determines the defocusing or line-of-sight location of the imaged particle measured from t...

متن کامل

A Thin Layer Imaging with the Total Internal Reflection Fluorescence Microscopy

Total internal reflection fluorescence microscopy (TIRFM) is an optical technique that allows imaging of a thin layer of the sample with a thickness of about 100-200 nm. It is used in science of cell biology to study cellular processes, especially near the membranes of living cells. This method is based on the total internal reflection phenomenon, where the evanescent wave is generated in the l...

متن کامل

Tracking Movements of the Microtubule Motors Kinesin and Dynein Using Total Internal Reflection Fluorescence Microscopy.

Total internal reflection fluorescence microscopy (TIRFM) is a wide-field illumination technique that illuminates only the molecules near the glass coverslip. It has become widely used in biological imaging because it has a significantly reduced background and high temporal resolution capability. The principles of TIRFM are illustrated in this protocol, in which the movements of motor proteins ...

متن کامل

Two-photon Scanning Fluorescence Microscopy under Total Internal Reflection

Two-photon fluorescence microscopy is a powerful method for many applications. Because of the ability of strong attenuation of the background fluorescence, total internal reflection fluorescence microscopy (TIRFM) has been the major technique in the fluorescence imaging and single molecule detections. Recently, we have developed a new type of TIRFM called scanning TIRFM (henceforth abbreviated ...

متن کامل

Subcellular and single-molecule imaging of plant fluorescent proteins using total internal reflection fluorescence microscopy (TIRFM)

Total internal reflection fluorescence microscopy (TIRFM) has been proven to be an extremely powerful technique in animal cell research for generating high contrast images and dynamic protein conformation information. However, there has long been a perception that TIRFM is not feasible in plant cells because the cell wall would restrict the penetration of the evanescent field and lead to scatte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004