The discretised lognormal and hooked power law distributions for complete citation data: Best options for modelling and regression
نویسنده
چکیده
Identifying the statistical distribution that best fits citation data is important to allow robust and powerful quantitative analyses. Whilst previous studies have suggested that both the hooked power law and discretised lognormal distributions fit better than the power law and negative binomial distributions, no comparisons so far have covered all articles within a discipline, including those that are uncited. Based on an analysis of 26 different Scopus subject areas in seven different years, this article reports comparisons of the discretised lognormal and the hooked power law with citation data, adding 1 to citation counts in order to include zeros. The hooked power law fits better in two thirds of the subject/year combinations tested for journal articles that are at least three years old, including most medical, life and natural sciences, and for virtually all subject areas for younger articles. Conversely, the discretised lognormal tends to fit best for arts, humanities, social science and engineering fields. The difference between the fits of the distributions is mostly small, however, and so either could reasonably be used for modelling citation data. For regression analyses, however, the best option is to use ordinary least squares regression applied to the natural logarithm of citation counts plus one, especially for sets of younger articles, because of the increased precision of the parameters.
منابع مشابه
Are there too many uncited articles? Zero inflated variants of the discretised lognormal and hooked power law distributions
Although statistical models fit many citation data sets reasonably well with the best fitting models being the hooked power law and discretised lognormal distribution, the fits are rarely close. One possible reason is that there might be more uncited articles than would be predicted by any model if some articles are inherently uncitable. Using data from 23 different Scopus categories, this arti...
متن کاملAre the discretised lognormal and hooked power law distributions plausible for citation data?
There is no agreement over which statistical distribution is most appropriate for modelling citation count data. This is important because if one distribution is accepted then the relative merits of different citation-based indicators, such as percentiles, arithmetic means and geometric means, can be more fully assessed. In response, this article investigates the plausibility of the discretised...
متن کاملCitation count distributions for large monodisciplinary journals
Mike Thelwall, Statistical Cybermetrics Research Group, University of Wolverhampton, UK. Many different citation-based indicators are used by researchers and research evaluators to help evaluate the impact of scholarly outputs. Although the appropriateness of individual citation indicators depends in part on the statistical properties of citation counts, there is no universally agreed best-fitt...
متن کاملStopped Sum Models for Citation Data
It is important to identify the most appropriate statistical model for citation data in order to maximise the power of future analyses as well as to shed light on the processes that drive citations. This article assesses stopped sum models and compares them with two previously used models, the discretised lognormal and negative binomial distributions using the Akaike Information Criterion (AIC)...
متن کاملDistributions for cited articles from individual subjects and years
The citations to a set of academic articles are typically unevenly shared, with many articles attracting few citations and few attracting many. It is important to know more precisely how citations are distributed in order to help statistical analyses of citations, especially for sets of articles from a single discipline and a small range of years, as normally used for research evaluation. This ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Informetrics
دوره 10 شماره
صفحات -
تاریخ انتشار 2016