TβRII Regulates the Proliferation of Metanephric Mesenchyme Cells through Six2 In Vitro
نویسندگان
چکیده
The transforming growth factor-β (TGFβ) family signaling pathways play an important role in regulatory cellular networks and exert specific effects on developmental programs during embryo development. However, the function of TGFβ signaling pathways on the early kidney development remains unclear. In this work, we aim to detect the underlying role of TGFβ type II receptor (TβRII) in vitro, which has a similar expression pattern as the crucial regulator Six2 during early kidney development. Firstly, the 5-ethynyl-2'-deoxyuridine (EdU) assay showed knock down of TβRII significantly decreased the proliferation ratio of metanephric mesenchyme (MM) cells. Additionally, real-time Polymerase Chain Reaction (PCR) and Western blot together with immunofluorescence determined that the mRNA and protein levels of Six2 declined after TβRII knock down. Also, Six2 was observed to be able to partially rescue the proliferation phenotype caused by the depletion of TβRII. Moreover, bioinformatics analysis and luciferase assay indicated Smad3 could transcriptionally target Six2. Further, the EdU assay showed that Smad3 could also rescue the inhibition of proliferation caused by the knock down of TβRII. Taken together, these findings delineate the important function of the TGFβ signaling pathway in the early development of kidney and TβRII was shown to be able to promote the expression of Six2 through Smad3 mediating transcriptional regulation and in turn activate the proliferation of MM cells.
منابع مشابه
Zeb1 Is a Potential Regulator of Six2 in the Proliferation, Apoptosis and Migration of Metanephric Mesenchyme Cells
Nephron progenitor cells surround around the ureteric bud tips (UB) and inductively interact with the UB to originate nephrons, the basic units of renal function. This process is determined by the internal balance between self-renewal and consumption of the nephron progenitor cells, which is depending on the complicated regulation networks. It has been reported that Zeb1 regulates the prolifera...
متن کاملSix2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney.
During kidney development and in response to inductive signals, the metanephric mesenchyme aggregates, becomes polarized, and generates much of the epithelia of the nephron. As such, the metanephric mesenchyme is a renal progenitor cell population that must be replenished as epithelial derivatives are continuously generated. The molecular mechanisms that maintain the undifferentiated state of t...
متن کاملThe transcription factor Six2 activates expression of the Gdnf gene as well as its own promoter
The development of the metanephric kidney proceeds through reciprocal interactions between the metanephric mesenchyme and the ureteric bud. One important molecule mediating this interaction is the glial cell line-derived neurotrophic factor Gdnf, which is secreted by the mesenchymal cells. Regulation of Gdnf expression is largely unknown. We show here that a member of the Six family of homeobox...
متن کاملPreferential Propagation of Competent SIX2+ Nephronic Progenitors by LIF/ROCKi Treatment of the Metanephric Mesenchyme
Understanding the mechanisms responsible for nephrogenic stem cell preservation and commitment is fundamental to harnessing the potential of the metanephric mesenchyme (MM) for nephron regeneration. Accordingly, we established a culture model that preferentially expands the MM SIX2+ progenitor pool using leukemia inhibitory factor (LIF), a Rho kinase inhibitor (ROCKi), and extracellular matrix....
متن کاملSix2 Is a Coordinator of LiCl-Induced Cell Proliferation and Apoptosis
The metanephric mesenchyme (MM) cells are a subset of kidney progenitor cells and play an essential role in mesenchymal-epithelial transition (MET), the key step of nephron generation. Six2, a biological marker related to Wnt signaling pathway, promotes the proliferation, inhibits the apoptosis and maintains the un-differentiation of MM cells. Besides, LiCl is an activator of Wnt signaling path...
متن کامل