An Invariant Method of Fundamental Solutions for the Cauchy Problem in Two-Dimensional Isotropic Linear Elasticity

نویسندگان

  • Yao Sun
  • Fuming Ma
  • Xu Zhou
چکیده

In this paper, we propose a numerical algorithm based on the method of fundamental solutions (MFS) for the Cauchy problem in two-dimensional linear elasticity. Through the use of the double-layer potential function, we give the invariance property for a problem with two different descriptions. In order to adapt this invariance property, we give an invariant MFS to satisfy this invariance property, i.e., formulate the MFS with an added constant and an additional constraint. The method is combining the Newton method and classical Tikhonov regularization with Morozov discrepancy principle to solve the inverse Cauchy problem. Some examples are given for numerical verification on the efficiency of the proposed method. The numerical convergence, accuracy, and stability of the method with respect to the the number of source points and the distance between the pseudo-boundary and the real boundary of the solution domain, and decreasing the amount of noise added into the input data, respectively, are also analysed with some examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The method of fundamental solutions for three-dimensional elastostatics problems

We consider the application of the method of fundamental solutions to isotropic elastostatics problems in three space dimensions. The displacements are approximated by linear combinations of the fundamental solutions of the Cauchy–Navier equations of elasticity, which are expressed in terms of sources placed outside the domain of the problem under consideration. The final positions of the sourc...

متن کامل

GENERAL SOLUTION OF ELASTICITY PROBLEMS IN TWO DIMENSIONAL POLAR COORDINATES USING MELLIN TRANSFORM

Abstract In this work, the Mellin transform method was used to obtain solutions for the stress field components in two dimensional (2D) elasticity problems in terms of plane polar coordinates. the Mellin transformation was applied to the biharmonic stress compatibility equation expressed in terms of the Airy stress potential function, and the boundary value problem transformed to an algebraic  ...

متن کامل

Elzaki transform method for finding solutions to two-dimensional elasticity problems in polar coordinates formulated using Airy stress functions

In this paper, the Elzaki transform method is used for solving two-dimensional (2D) elasticity problems in plane polar coordinates. Airy stress function was used to express the stress compatibility equation as a biharmonic equation. Elzaki transform was applied with respect to the radial coordinate to a modified form of the stress compatibility equation, and the biharmonic equation simplified t...

متن کامل

ON MAXWELL'S STRESS FUNCTIONS FOR SOLVING THREE DIMENSIONAL ELASTICITY PROBLEMS IN THE THEORY OF ELASTICITY

The governing equations of three dimensional elasticity problems include the six Beltrami-Michell stress compatibility equations, the three differential equations of equilibrium, and the six material constitutive relations; and these are usually solved subject to the boundary conditions. The system of fifteen differential equations is usually difficult to solve, and simplified methods are usual...

متن کامل

Two-Dimensional Elasticity Solution for Arbitrarily Supported Axially Functionally Graded Beams

First time, an analytical two-dimensional (2D) elasticity solution for arbitrarily supported axially functionally graded (FG) beam is developed. Linear gradation of the material property along the axis of the beam is considered. Using the strain displacement and constitutive relations, governing partial differential equations (PDEs) is obtained by employing Ressiner mixed var...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 64  شماره 

صفحات  -

تاریخ انتشار 2015