An explicit formula for ndinv, a new statistic for two-shuffle parking functions
نویسندگان
چکیده
In a recent paper, Duane, Garsia, and Zabrocki introduced a new statistic, “ndinv”, on a family of parking functions. The definition was guided by a recursion satisfied by the polynomial 〈∆hmCp1Cp2 . . . Cpk1, en〉, for ∆hm a Macdonald eigenoperator, Cpi a modified Hall-Littlewood operator and (p1, p2, . . . , pk) a composition of n. Using their new statistics, they are able to give a new interpretation for the polynomial 〈∇en, hjhn−j〉 as a q,t numerator of parking functions by area and ndinv. We recall that in the shuffle conjecture, parking functions are q,t enumerated by area and diagonal inversion number (dinv). Since their definition is recursive, they pose the problem of obtaining a non recursive definition. We solved this problem by giving an explicit formula for ndinv similar to the classical definition of dinv. In this paper, we describe the work we did to construct this formula and to prove that the resulting ndinv is the same as the one recursively defined by Duane, Garsia, and Zabrocki. Résumé. Dans un travail récent Duane, Garsia et Zabrocki ont introduit une nouvelle statistique, “ndinv” pour une famille de Fonctions Parking. Ce “ndinv” découle d’une récurrence satisfaite par le polynôme 〈∆hmCp1Cp2 · · ·Cpk 1 , en〉, oú ∆hm est un opérateur linéaire avec fonctions propres les polynômes de Macdonald, les Cpi sont des opérateurs de Hall-Littlewood modifiés et (p1, p2, . . . , pn) est un vecteur à composantes entières positives. Par moyen de cette statistique, ils ont réussi à donner une nouvelle interpretation combinatoire au polynôme 〈∇en , hjhn−j〉 on remplaçant “dinv” par “ndinv”. Rappelons nous que la conjecture “Shuffle” exprime ce même polynôme comme somme pondérée de Fonctions Parking avec poids t à la “aire” est q au ‘dinv”. Puisque il donnent une definition récursive du “ndinv”’ il posent le problème de l’obtenir d’une façon directe. On résout se problème en donnant une formule explicite qui permet de calculer directement le “ndinv” à la manière de la formule classique du “dinv”. Dans cet article on décrit le travail qu’on a fait pour construir cette formule et on démontre que nôtre formule donne le même “ndinv” récursivement construit par Duane, Garsia et Zabrocki.
منابع مشابه
A simpler formula for the number of diagonal inversions of an (m, n)-parking function and a returning fermionic formula
Recent results have placed the classical shuffle conjecture of Haglund et al. in a broader context of an infinite family of conjectures about parking functions in any rectangular lattice. The combinatorial side of the new conjectures has been defined using a complicated generalization of the dinv statistic which is composed of three parts and which is not obviously nonnegative. Here we simplify...
متن کاملAn explicit formula for the number of fuzzy subgroups of a finite abelian $p$-group\ of rank two
Ngcibi, Murali and Makamba [Fuzzy subgroups of rank two abelian$p$-group, Iranian J. of Fuzzy Systems {bf 7} (2010), 149-153]considered the number of fuzzy subgroups of a finite abelian$p$-group $mathbb{Z}_{p^m}times mathbb{Z}_{p^n}$ of rank two, andgave explicit formulas for the cases when $m$ is any positiveinteger and $n=1,2,3$. Even though their method can be used for thecases when $n=4,5,l...
متن کاملExplicit Double Shuffle Relations and a Generalization of Euler’s Decomposition Formula
We give an explicit formula for the shuffle relation in a general double shuffle framework that specializes to double shuffle relations of multiple zeta values and multiple polylogarithms. As an application, we generalize the well-known decomposition formula of Euler that expresses the product of two Riemann zeta values as a sum of double zeta values to a formula that expresses the product of t...
متن کاملTutte polynomials of wheels via generating functions
We find an explicit expression of the Tutte polynomial of an $n$-fan. We also find a formula of the Tutte polynomial of an $n$-wheel in terms of the Tutte polynomial of $n$-fans. Finally, we give an alternative expression of the Tutte polynomial of an $n$-wheel and then prove the explicit formula for the Tutte polynomial of an $n$-wheel.
متن کاملTwo special cases of the Rational Shuffle Conjecture
The Classical Shuffle Conjecture of Haglund et al. (2005) has a symmetric function side and a combinatorial side. The combinatorial side q, t-enumerates parking functions in the n × n lattice. The symmetric function side may be simply expressed as∇en, where∇ is the Macdonald eigen-operator introduced by Bergeron and Garsia (1999) and en is the elementary symmetric function. The combinatorial si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 120 شماره
صفحات -
تاریخ انتشار 2013