On the computation of the Jordan canonical form of regular matrix polynomials
نویسندگان
چکیده
In this paper, an algorithm for the computation of the Jordan canonical form of regular matrix polynomials is proposed. The new method contains rank conditions of suitably defined block Toeplitz matrices and it does not require the computation of the Jordan chains or the Smith form. The Segré and Weyr characteristics are also considered.
منابع مشابه
Jordan Canonical Form with Parameters from Frobenius Form with Parameters
The Jordan canonical form (JCF) of a square matrix is a foundational tool in matrix analysis. If the matrix A is known exactly, symbolic computation of the JCF is possible though expensive. When the matrix contains parameters, exact computation requires either a potentially very expensive case discussion, significant expression swell or both. For this reason, no current computer algebra system ...
متن کاملInfinite-dimensional versions of the primary, cyclic and Jordan decompositions
The famous primary and cyclic decomposition theorems along with the tightly related rational and Jordan canonical forms are extended to linear spaces of infinite dimensions with counterexamples showing the scope of extensions.
متن کاملDetermination of a Matrix Function in the Form of f(A)=g(q(A)) Where g(x) Is a Transcendental Function and q(x) Is a Polynomial Function of Large Degree Using the Minimal Polynomial
Matrix functions are used in many areas of linear algebra and arise in numerical applications in science and engineering. In this paper, we introduce an effective approach for determining matrix function f(A)=g(q(A)) of a square matrix A, where q is a polynomial function from a degree of m and also function g can be a transcendental function. Computing a matrix function f(A) will be time- consu...
متن کاملNormal matrix polynomials with nonsingular leading coefficients
In this paper, we introduce the notions of weakly normal and normal matrix polynomials, with nonsingular leading coefficients. We characterize these matrix polynomials, using orthonormal systems of eigenvectors and normal eigenvalues. We also study the conditioning of the eigenvalue problem of a normal matrix polynomial, constructing an appropriate Jordan canonical form.
متن کاملVibration Analysis of Global Near-regular Mechanical Systems
Some near-regular mechanical systems involve global deviations from their corresponding regular system. Despite extensive research on vibration analysis (eigensolution) of regular and local near-regular mechanical systems, the literature on vibration analysis of global near-regular mechanical systems is scant. In this paper, a method for vibration analysis of such systems was developed using Kr...
متن کامل