Ultrafast relaxation dynamics of hot optical phonons in graphene

نویسندگان

  • Haining Wang
  • Jared H. Strait
  • Paul A. George
  • Shriram Shivaraman
  • Virgil B. Shields
  • Mvs Chandrashekhar
  • Jeonghyun Hwang
  • Farhan Rana
  • Michael G. Spencer
  • Carlos S. Ruiz-Vargas
  • Jiwoong Park
چکیده

Using ultrafast optical pump-probe spectroscopy, we study the relaxation dynamics of hot optical phonons in few-layer and multilayer graphene films grown by epitaxy on silicon carbide substrates and by chemical vapor deposition on nickel substrates. In the first few hundred femtoseconds after photoexcitation, the hot carriers lose most of their energy to the generation of hot optical phonons which then present the main bottleneck to subsequent cooling. Optical phonon cooling on short time scales is found to be independent of the graphene growth technique, the number of layers, and the type of the substrate. We find average phonon lifetimes in the 2.5–2.55 ps range. We model the relaxation dynamics of the coupled carrier-phonon system with rate equations and find a good agreement between the experimental data and the theory. The extracted optical phonon lifetimes agree very well with the theory based on anharmonic phonon interactions. © 2010 American Institute of Physics. doi:10.1063/1.3291615

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of Interface Thermal Resistance on Relaxation Dynamics of Metal-Dielectric Nanocomposite Materials under Ultrafast Pulse Laser Excitation

Nanocomposite materials, including noble metal nanoparticles embedded in a dielectric host medium, are interesting because of their optical properties linked to surface plasmon resonance phenomena. For studding of nonlinear optical properties and/or energy transfer process, these materials may be excited by ultrashort pulse laser with a temporal width varying from some femtoseconds to some hund...

متن کامل

Tunable Ultrafast Thermal Relaxation in Graphene Measured by Continuous-Wave Photomixing.

Hot electron effects in graphene are significant because of graphene's small electronic heat capacity and weak electron-phonon coupling, yet the dynamics and cooling mechanisms of hot electrons in graphene are not completely understood. We describe a novel photocurrent spectroscopy method that uses the mixing of continuous-wave lasers in a graphene photothermal detector to measure the frequency...

متن کامل

Temperature Dependence of Ultrafast Phonon Dynamics in Graphite

Nonequilibrium optical phonons are generated in graphite following the excitation of electron-hole pairs with a femtosecond laser pulse. Their energy relaxation is probed by means of terahertz pulses. We find that the hot-phonon lifetime increases by a factor of 2 when the sample temperature decreases from 300 to 5 K. These results suggest that the energy relaxation in graphite at room temperat...

متن کامل

Ultrafast collinear scattering and carrier multiplication in graphene.

Graphene is emerging as a viable alternative to conventional optoelectronic, plasmonic and nanophotonic materials. The interaction of light with charge carriers creates an out-of-equilibrium distribution, which relaxes on an ultrafast timescale to a hot Fermi-Dirac distribution, that subsequently cools emitting phonons. Although the slower relaxation mechanisms have been extensively investigate...

متن کامل

Probing near Dirac point electron-phonon interaction in graphene

Carrier dynamics in graphene films on CaF2 have been measured in the mid infrared region by femtosecond pump-probe spectroscopy. The relaxation kinetics shows two decay times. The fast time component is ~0.2 ps, which is attributed to the mixture of initial few ultrafast intraband and interband decay channels. The slow component is ~1.5 ps, which is primarily assigned to optical phonon-acoustic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010