Surface plasmon resonance sensor utilizing an integrated organic light emitting diode.

نویسندگان

  • Jörg Frischeisen
  • Christian Mayr
  • Nils A Reinke
  • Stefan Nowy
  • Wolfgang Brütting
چکیده

A novel surface plasmon resonance (SPR) sensor based on an integrated planar and polychromatic light source is presented. The sensor comprises an organic light emitting diode (OLED) and a metallic sensing layer located on opposite sides of a glass prism. We successfully fabricated and tested prototype sensors based on this approach by the use of different prism geometries and OLEDs with blue, green and red emission color. We investigated the angular and wavelength dependent SPR dispersion relation for sensing layers consisting of silver and gold in contact with air. Further on we demonstrated the sensor function by real time monitoring of temperature changes inside an adjacent water reservoir as well as by recording the dissolving process of sodium chloride in water. The presented technique offers the advantage that there is no necessity to couple light from external bulky sources such as lasers or halogen lamps into the sensing device which makes it particularly interesting for miniaturization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of surface plasmon-coupled emission for enhancing light transmission through Top-Emitting Organic Light Emitting Diodes

In this paper, we perform surface plasmon-coupled emission studies on Rhodamine 6G molecules embedded in a corrugated structure of a thin film composed of fluorinated silica particles, and a binding medium. Our results show enhancements of photoluminescence due to surface corrugation. By varying the size of the fluorinated silica nanoparticles we were able to control the surface correlation len...

متن کامل

Enhancement and Reduction of Nonradiative Decay Process in Organic Light-Emitting Diodes by Gold Nanoparticles

The influences of gold nanoparticles (GNPs) and the buffer layer on the performance of organic light-emitting diodes are investigated in this study. The GNPs are doped into poly (3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) and the buffer layer is introduced between the hole-transport layer and emitting layer. The GNPs are found to have the surface plasmon resonance at a wavel...

متن کامل

A Low-Cost and Portable Dual-Channel Fiber Optic Surface Plasmon Resonance System

A miniaturization and integration dual-channel fiber optic surface plasmon resonance (SPR) system was proposed and demonstrated in this paper. We used a yellow light-emitting diode (LED, peak wavelength 595 nm) and built-in web camera as a light source and detector, respectively. Except for the detection channel, one of the sensors was used as a reference channel to compensate nonspecific bindi...

متن کامل

Nano-Structured Organic Devises and Biosensors Utilizing Evanescent Waves and Surface Plasmon Resonance

In this review, we introduce a variety of surface sensitive techniques for the study of organic thin films, and applications to organic devices. These studies include surface plasmon emission light, organic thin film transistors, combination of quartz crystal microbalance and optical waveguide spectroscopy, evaluation of alignment of liquid crystal molecules at surfaces, and biosensor applicati...

متن کامل

Organic Plasmon-Emitting Diodes for Detecting Refractive Index Variation

A photo-excited organic layer on a metal thin film with a corrugated substrate was used to generate surface plasmon grating coupled emissions (SPGCEs). Directional emissions corresponded to the resonant condition of surface plasmon modes on the Au/air interface. In experimental comparisons of the effects of different pitch sizes on the plasmonic band-gap, the obtained SPGCEs were highly directi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 16 22  شماره 

صفحات  -

تاریخ انتشار 2008