Design of Continuous Attractor Networks with Monotonic Tuning Using a Symmetry Principle

نویسندگان

  • Christian K. Machens
  • Carlos D. Brody
چکیده

Neurons that sustain elevated firing in the absence of stimuli have been found in many neural systems. In graded persistent activity, neurons can sustain firing at many levels, suggesting a widely found type of network dynamics in which networks can relax to any one of a continuum of stationary states. The reproduction of these findings in model networks of nonlinear neurons has turned out to be nontrivial. A particularly insightful model has been the "bump attractor," in which a continuous attractor emerges through an underlying symmetry in the network connectivity matrix. This model, however, cannot account for data in which the persistent firing of neurons is a monotonic -- rather than a bell-shaped -- function of a stored variable. Here, we show that the symmetry used in the bump attractor network can be employed to create a whole family of continuous attractor networks, including those with monotonic tuning. Our design is based on tuning the external inputs to networks that have a connectivity matrix with Toeplitz symmetry. In particular, we provide a complete analytical solution of a line attractor network with monotonic tuning and show that for many other networks, the numerical tuning of synaptic weights reduces to the computation of a single parameter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Attractor Based Analysis of Centrally Cracked Plate Subjected to Chaotic Excitation

The presence of part-through cracks with limited length is one of the prevalent defects in the plate structures. Due to the slight effect of this type of damages on the frequency response of the plates, conventional vibration-based damage assessment could be a challenging task. In this study for the first time, a recently developed state-space method which is based on the chaotic excitation is ...

متن کامل

Lifetime and Stability in Line Attractor Networks of Short-term Memory

Line attractor networks have long served as the standard model of short-term memory systems for analogue variables. In this study, we investigate the stability of attractor states for a line attractor with monotonic tuning curves. We furthermore quantify the stability of network states against noise and show how the lifetime of short-term memory states depends on the level of neural noise.

متن کامل

Dynamical properties of continuous attractor neural network with background tuning

Persistent activity holds the transient stimulus for up to many seconds even after the stimulus is gone. It has been implemented in a class of models known as continuous attractor neural networks, which have infinite stable states corresponding to persistent activity patterns. Continuous attractor neural network remains stable so does not change systematically in the absence of stimulus input. ...

متن کامل

Stimulus number, duration and intensity encoding in randomly connected attractor networks with synaptic depression

Randomly connected recurrent networks of excitatory groups of neurons can possess a multitude of attractor states. When the internal excitatory synapses of these networks are depressing, the attractor states can be destabilized with increasing input. This leads to an itinerancy, where with either repeated transient stimuli, or increasing duration of a single stimulus, the network activity advan...

متن کامل

A Kahn Principle for Networks of Nonmonotonic Real-time Processes

We show that the input-output function computed by a network of asynchronous real-time processes is denoted by the unique xed point of a Scott continuous functional even though the network or its components may compute a discontinuous function. This extends a well-known principle of Kahn [Kahn, 1974] to an important class of parallel systems that has resisted the traditional xed point approach....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural computation

دوره 20 2  شماره 

صفحات  -

تاریخ انتشار 2008