Brownian Limits, Local Limits and Variance Asymptotics for Convex Hulls in the Ball by Pierre Calka,

نویسندگان

  • TOMASZ SCHREIBER
  • J. E. YUKICH
  • Tomasz Schreiber
چکیده

Schreiber and Yukich [Ann. Probab. 36 (2008) 363–396] establish an asymptotic representation for random convex polytope geometry in the unit ball Bd , d ≥ 2, in terms of the general theory of stabilizing functionals of Poisson point processes as well as in terms of generalized paraboloid growth processes. This paper further exploits this connection, introducing also a dual object termed the paraboloid hull process. Via these growth processes we establish local functional limit theorems for the properly scaled radius-vector and support functions of convex polytopes generated by high-density Poisson samples. We show that direct methods lead to explicit asymptotic expressions for the fidis of the properly scaled radius-vector and support functions. Generalized paraboloid growth processes, coupled with general techniques of stabilization theory, yield Brownian sheet limits for the defect volume and mean width functionals. Finally we provide explicit variance asymptotics and central limit theorems for the k-face and intrinsic volume functionals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brownian limits, local limits, extreme value and variance asymptotics for convex hulls in the ball

The paper [40] establishes an asymptotic representation for random convex polytope geometry in the unit ball Bd, d ≥ 2, in terms of the general theory of stabilizing functionals of Poisson point processes as well as in terms of the so-called generalized paraboloid growth process. This paper further exploits this connection, introducing also a dual object termed the paraboloid hull process. Via ...

متن کامل

Variance Asymptotics and Scaling Limits for Gaussian Polytopes

Let Kn be the convex hull of i.i.d. random variables distributed according to the standard normal distribution on Rd. We establish variance asymptotics for the re-scaled volume and k-face functional of Kn, k ∈ {0, 1, ..., d − 1}, resolving an open problem. Asymptotic variances and the scaling limit of the boundary of Kn are given in terms of functionals of germ-grain models having parabolic gra...

متن کامل

Variance Asymptotics and Scaling Limits for Random Polytopes

Let K be a convex set in Rd and let Kλ be the convex hull of a homogeneous Poisson point process Pλ of intensity λ on K. When K is a simple polytope, we establish scaling limits as λ → ∞ for the boundary of Kλ in a vicinity of a vertex of K and we give variance asymptotics for the volume and k-face functional of Kλ, k ∈ {0, 1, ..., d − 1}, resolving an open question posed in [18]. The scaling l...

متن کامل

Variance asymptotics for random polytopes in smooth convex bodies

Let K ⊂ R be a smooth convex set and let Pλ be a Poisson point process on R of intensity λ. The convex hull of Pλ ∩ K is a random convex polytope Kλ. As λ → ∞, we show that the variance of the number of k-dimensional faces of Kλ, when properly scaled, converges to a scalar multiple of the affine surface area of K. Similar asymptotics hold for the variance of the number of k-dimensional faces fo...

متن کامل

1 9 Fe b 20 07 Variance asymptotics and central limit theorems for generalized growth processes with applications to convex hulls and maximal points

We show that the random point measures induced by vertices in the convex hull of a Poisson sample on the unit ball, when properly scaled and centered, converge to those of a mean zero Gaussian field. We establish limiting variance and covariance asymptotics in terms of the density of the Poisson sample. Similar results hold for the point measures induced by the maximal points in a Poisson sampl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013