A Systematic Investigation of p-Nitrophenol Reduction by Bimetallic Dendrimer Encapsulated Nanoparticles

نویسندگان

  • Zachary D. Pozun
  • Stacia E. Rodenbusch
  • Emily Keller
  • Kelly Tran
  • Wenjie Tang
  • Keith J. Stevenson
  • Graeme Henkelman
چکیده

We demonstrate that the reduction of p-nitrophenol to p-aminophenol by NaBH4 is catalyzed by both monometallic and bimetallic nanoparticles (NPs). We also demonstrate a straightforward and precise method for the synthesis of bimetallic nanoparticles using poly(amido)amine dendrimers. The resulting dendrimer encapsulated nanoparticles (DENs) are monodisperse, and the size distribution does not vary with different elemental combinations. Random alloys of Pt/Cu, Pd/Cu, Pd/Au, Pt/Au, and Au/Cu DENs were synthesized and evaluated as catalysts for p-nitrophenol reduction. These combinations are chosen in order to selectively tune the binding energy of the p-nitrophenol adsorbate to the nanoparticle surface. Following the Brønsted-Evans-Polanyi (BEP) relation, we show that the binding energy can reasonably predict the reaction rates of p-nitrophenol reduction. We demonstrate that the measured reaction rate constants of the bimetallic DENs is not always a simple average of the properties of the constituent metals. In particular, DENs containing metals with similar lattice constants produce a binding energy close to the average of the two constituents, whereas DENs containing metals with a lattice mismatch show a bimodal distribution of binding energies. Overall, in this work we present a uniform method for synthesizing pure and bimetallic DENs and demonstrate that their catalytic properties are dependent on the adsorbate's binding energy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation and catalytic evaluation of ruthenium-nickel dendrimer encapsulated nanoparticles via intradendrimer redox displacement of nickel nanoparticles.

Ru and Ru(x)Ni(30) dendrimer encapsulated nanoparticles (DENs) were synthesized using a redox-displacement method. DEN catalytic activity for the reduction of p-nitrophenol was evaluated and found to be dependent on the ratio of metals present.

متن کامل

Bimetallic palladium-platinum dendrimer-encapsulated catalysts.

We report the synthesis, characterization, and catalytic activity of bimetallic palladium-platinum dendrimer-encapsulated catalysts (DECs). These materials are prepared by co-complexation of different ratios of palladium and platinum salts to the interior tertiary amines of fourth-generation, hydroxyl-terminated poly(amidoamine) (PAMAM) dendrimers. Chemical reduction of these composites yields ...

متن کامل

Bimetallic palladium-gold dendrimer-encapsulated catalysts.

The synthesis, characterization, and catalytic properties of 1-3 nm-diameter bimetallic PdAu dendrimer-encapsulated catalysts are reported. Both alloy and core/shell PdAu nanoparticles were prepared. The catalytic hydrogenation of allyl alcohol was significantly enhanced in the presence of the alloy and core/shell PdAu nanoparticles as compared to mixtures of single-metal nanoparticles.

متن کامل

Precise localization of metal nanoparticles in dendrimer nanosnakes or inner periphery and consequences in catalysis

Understanding the relationship between the location of nanoparticles (NPs) in an organic matrix and their catalytic performances is essential for catalyst design. Here we show that catalytic activities of Au, Ag and CuNPs stabilized by dendrimers using coordination to intradendritic triazoles, galvanic replacement or stabilization outside dendrimers strongly depends on their location. AgNPs are...

متن کامل

Structural analysis of PdAu dendrimer-encapsulated bimetallic nanoparticles.

PdAu dendrimer-encapsulated nanoparticles (DENs) were prepared via sequential reduction of the component metals. When Au is reduced onto 55-atom, preformed Pd DEN cores, analysis by UV-vis spectroscopy, electron microscopy, and extended X-ray absorption fine structure (EXAFS) spectroscopy leads to a model consistent with inversion of the two metals. That is, Au migrates into the core and Pd res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 117  شماره 

صفحات  -

تاریخ انتشار 2013