Projective Summands in Generators
نویسندگان
چکیده
An i?-module Mis a generator (of the category of modules) provided every module is a homomorphic image of a suitable direct sum of copies of M. Equivalently, some M has R as a summand. Except in the last section, all rings are assumed to be commutative, Noetherian domains, and modules are usually finitely generated. In this context generators are exactly those modules that have non-zero free summands locally. Of course, generators can fail to have free summands (e.g., over Dedekind domains), and we ask whether they necessarily have non-zero projectίve summands. The answer is "yes" for rings of dimension 1, as we point out in § 3, and for the polynomial ring in one variable over a Dedekind domain. In § 1 we show that for 2-dimensional rings the answer is intimately connected with the structure of projective modules. Our main result in the positive direction, Theorem 1.3, grew out of the attempt, in conversations with T. Stafford, to understand the case R = k[x, y]. In § 2 we give examples of rings having generators with no projective summands. The last section contains miscellaneous observations, some of them on rings without chain conditions.
منابع مشابه
$PI$-extending modules via nontrivial complex bundles and Abelian endomorphism rings
A module is said to be $PI$-extending provided that every projection invariant submodule is essential in a direct summand of the module. In this paper, we focus on direct summands and indecomposable decompositions of $PI$-extending modules. To this end, we provide several counter examples including the tangent bundles of complex spheres of dimensions bigger than or equal to 5 and certain hyper ...
متن کاملGenerating Modules Efficiently: Theorems from Algebraic K-Theory
Several of the fundamental theorems about algebraic K, and Kr are concerned with finding unimodular elements, that is, elements of a projective module which generate a free summand. In this paper we use the notion of a basic element (in the terminology of Swan [22]) to extend these theorems to the context of finitely generated modules. Our techniques allow a simplification and strengthening of ...
متن کاملSyzygy Modules with Semidualizing or G-projective Summands
Let R be a commutative Noetherian local ring with residue class field k. In this paper, we mainly investigate direct summands of the syzygy modules of k. We prove that R is regular if and only if some syzygy module of k has a semidualizing summand. After that, we consider whether R is Gorenstein if and only if some syzygy module of k has a G-projective summand.
متن کاملProjective Dimension and the Singular Locus
For a Noetherian local ring, the prime ideals in the singular locus completely determine the category of finitely generated modules up to direct summands, extensions and syzygies. From this some simple homological criteria are derived for testing whether an arbitrary module has finite projective dimension.
متن کاملOn H-cofinitely supplemented modules
A module $M$ is called $emph{H}$-cofinitely supplemented if for every cofinite submodule $E$ (i.e. $M/E$ is finitely generated) of $M$ there exists a direct summand $D$ of $M$ such that $M = E + X$ holds if and only if $M = D + X$, for every submodule $X$ of $M$. In this paper we study factors, direct summands and direct sums of $emph{H}$-cofinitely supplemented modules. Let $M$ be an $emph{H}...
متن کامل