Calibration and Validation of a Detailed Architectural Canopy Model Reconstruction for the Simulation of Synthetic Hemispherical Images and Airborne LiDAR Data
نویسندگان
چکیده
Canopy density measures such as the Leaf Area Index (LAI) have become standardized mapping products derived from airborne and terrestrial Light Detection And Ranging (aLiDAR and tLiDAR, respectively) data. A specific application of LiDAR point clouds is their integration into radiative transfer models (RTM) of varying complexity. Using, e.g., ray tracing, this allows flexible simulations of sub-canopy light condition and the simulation of various sensors such as virtual hemispherical images or waveform LiDAR on a virtual forest plot. However, the direct use of LiDAR data in RTMs shows some limitations in the handling of noise, the derivation of surface areas per LiDAR point and the discrimination of solid and porous canopy elements. In order to address these issues, a strategy upgrading tLiDAR and Digital Hemispherical Photographs (DHP) into plausible 3D architectural canopy models is suggested. The presented reconstruction workflow creates an almost unbiased virtual 3D representation of branch and leaf surface distributions, minimizing systematic errors due to the object–sensor relationship. The models are calibrated and validated using DHPs. Using the 3D models for simulations, their capabilities for the description of leaf density distributions and the simulation of aLiDAR and DHP signatures are shown. At an experimental test site, the suitability of the models, in order to systematically simulate and evaluate aLiDAR based LAI predictions under various scan settings is proven. This strategy makes it possible to show the importance of laser point sampling density, but also the diversity of scan angles and their quantitative effect onto error margins.
منابع مشابه
Conditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area
Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...
متن کاملModelling Canopy Gap Fraction from Lidar Intensity
We reconstruct the vertical pulse power distribution returned from a commercial small footprint discrete pulse airborne laser terrain mapper within a mixed forest landscape. By modifying a Beer-Lambert approach, we relate the ratio of ground return power / total return power to the canopy gap fraction (P) as derived from digital hemispherical photography (DHP). The results are compared to the c...
متن کاملThe Potential of Discrete Return, Small Footprint Airborne Laser Scanning Data for Vegetation Density Estimation
We evaluate the potential of deriving a vegetation leaf area index (LAI) from small footprint airborne laser scanning data. Based on findings from large area histograms of discrete laser returns for two contrasting plots, LAI is estimated from the fraction of first to last and single returns inside the canopy. The canopy returns are classified using thresholding of LIDAR raw data heights subtra...
متن کاملCalibration and Validation of Landsat Tree Cover in the Taiga-Tundra Ecotone
Monitoring current forest characteristics in the taiga ́tundra ecotone (TTE) at multiple scales is critical for understanding its vulnerability to structural changes. A 30 m spatial resolution Landsat-based tree canopy cover map has been calibrated and validated in the TTE with reference tree cover data from airborne LiDAR and high resolution spaceborne images across the full range of boreal for...
متن کاملAssessment of the AquaCrop Model for simulating Canola under different irrigation managements in a semiarid area
Field experiments were conducted in 2005-2006 and 2007-2008 and the data were used tocalibrate and validate yield and biomass of AquaCrop Model for canola (Brassica napus l.). Themodel was calibrated with the first year and then was validated with the second year data. Fivewater stress treatments at different growth stages were performed including fully irrigatedduring whole growing period (I1)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017