Eigenvectors of block circulant and alternating circulant matrices

نویسندگان

  • Garry J. Tee
  • Philip R. Davis
چکیده

The eigenvectors and eigenvalues of block circulant matrices had been found for real symmetric matrices with symmetric submatrices, and for block circulant matrices with circulant submatrices. The eigenvectors are now found for general block circulant matrices, including the Jordan Canonical Form for defective eigenvectors. That analysis is applied to Stephen J. Watson’s alternating circulant matrices, which reduce to block circulant matrices with square submatrices of order 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computation of the q-th roots of circulant matrices

In this paper, we investigate the reduced form of circulant matrices and we show that the problem of computing the q-th roots of a nonsingular circulant matrix A can be reduced to that of computing the q-th roots of two half size matrices B - C and B + C.

متن کامل

Eigenvector and Eigenvalues of Some Special Graphs. IV. Multilevel Circulants

A multilevel circulant is defined as a graph whose adjacency matrix has a certain block decomposition into circulant matrices. A general algebraic method for finding the eigenvectors and the eigenvalues of multilevel circulants is given. Several classes of graphs, including regular polyhedra, suns, and cylinders can be analyzed using this scheme.

متن کامل

Eigenspace of a circulant max-min matrix

Eigenvectors of a max-min matrix characterize stable states of the corresponding discrete-events system. Investigation of the max-min eigenvectors of a given matrix is therefore of a great practical importance. The eigenproblem in max-min algebra has been studied by many authors. Interesting results were found in describing the structure of the eigenspace, and algorithms for computing the maxim...

متن کامل

An application of the modified Leverrier-Faddeev algorithm to the singular value decomposition of block-circulant matrices and the spectral decomposition of symmetric block- circulant matrices

The Leverrier-Faddeev algorithm, as modified by Gower (1980), is little-known but is useful for deriving the algebraic, rather than numerical, spectral structure of matrices occurring in statistical methodology. An example is given of deriving explicit forms for the singular value decomposition of any block-circulant matrix and the spectral decomposition of any symmetric block-circulant matrix....

متن کامل

On the powers of fuzzy neutrosophic soft matrices

In this paper, ‎The powers of fuzzy neutrosophic soft square matrices (FNSSMs) under the operations $oplus(=max)$ and $otimes(=min)$ are studied‎. ‎We show that the powers of a given FNSM stabilize if and only if its orbits stabilize for each starting fuzzy neutrosophic soft vector (FNSV) and prove a necessary and sufficient condition for this property using the associated graphs of the FNSM‎. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005